{"title":"多肽和蛋白质的天然化学连接","authors":"Philip A. Cistrone, Michael J. Bird, Dillon T. Flood, Anthony P. Silvestri, Jordi C. J. Hintzen, Darren A. Thompson, Philip E. Dawson","doi":"10.1002/cpch.61","DOIUrl":null,"url":null,"abstract":"<p>For over 20 years, native chemical ligation (NCL) has played a pivotal role in enabling total synthesis and semisynthesis of increasingly complex peptide and protein targets. Classical NCL proceeds by chemoselective reaction of two unprotected polypeptide chains in near-neutral-pH, aqueous solution and is made possible by the presence of a thioester moiety on the C-terminus of the N-terminal peptide fragment and a natural cysteine residue on the N-terminus of the C-terminal peptide fragment. The reaction yields an amide bond adjacent to cysteine at the ligation site, furnishing a native protein backbone in a traceless manner. This unit highlights a number of recent and powerful advances in the methodology and outlines their particular uses, facilitating application in the synthesis of challenging protein targets. © 2019 by John Wiley & Sons, Inc.</p>","PeriodicalId":38051,"journal":{"name":"Current protocols in chemical biology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpch.61","citationCount":"16","resultStr":"{\"title\":\"Native Chemical Ligation of Peptides and Proteins\",\"authors\":\"Philip A. Cistrone, Michael J. Bird, Dillon T. Flood, Anthony P. Silvestri, Jordi C. J. Hintzen, Darren A. Thompson, Philip E. Dawson\",\"doi\":\"10.1002/cpch.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For over 20 years, native chemical ligation (NCL) has played a pivotal role in enabling total synthesis and semisynthesis of increasingly complex peptide and protein targets. Classical NCL proceeds by chemoselective reaction of two unprotected polypeptide chains in near-neutral-pH, aqueous solution and is made possible by the presence of a thioester moiety on the C-terminus of the N-terminal peptide fragment and a natural cysteine residue on the N-terminus of the C-terminal peptide fragment. The reaction yields an amide bond adjacent to cysteine at the ligation site, furnishing a native protein backbone in a traceless manner. This unit highlights a number of recent and powerful advances in the methodology and outlines their particular uses, facilitating application in the synthesis of challenging protein targets. © 2019 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":38051,\"journal\":{\"name\":\"Current protocols in chemical biology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpch.61\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in chemical biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpch.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in chemical biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpch.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 16