Shuo Shi, Na Yuan, Ming Yang, Zhenglin Du, Jinyue Wang, Xin Sheng, Jiayan Wu, Jingfa Xiao
{"title":"基因型代入性能的综合评价。","authors":"Shuo Shi, Na Yuan, Ming Yang, Zhenglin Du, Jinyue Wang, Xin Sheng, Jiayan Wu, Jingfa Xiao","doi":"10.1159/000489758","DOIUrl":null,"url":null,"abstract":"<p><p>Genotype imputation is a process of estimating missing ge-notypes from the haplotype or genotype reference panel. It can effectively boost the power of detecting single nucleotide polymorphisms (SNPs) in genome-wide association studies, integrate multi-studies for meta-analysis, and be applied in fine-mapping studies. The performance of genotype imputation is affected by many factors, including software, reference selection, sample size, and SNP density/sequencing coverage. A systematical evaluation of the imputation performance of current popular software will benefit future studies. Here, we evaluate imputation performances of Beagle4.1, IMPUTE2, MACH+Minimac3, and SHAPEIT2+ IM-PUTE2 using test samples of East Asian ancestry and references of the 1000 Genomes Project. The result indicated the accuracy of IMPUTE2 (99.18%) is slightly higher than that of the others (Beagle4.1: 98.94%, MACH+Minimac3: 98.51%, and SHAPEIT2+IMPUTE2: 99.08%). To achieve good and stable imputation quality, the minimum requirement of SNP density needs to be > 200/Mb. The imputation accuracies of IMPUTE2 and Beagle4.1 were under the minor influence of the study sample size. The contribution extent of reference to genotype imputation performance relied on software selection. We assessed the imputation performance on SNPs generated by next-generation whole genome sequencing and found that SNP sets detected by sequencing with 15× depth could be mostly got by imputing from the haplotype reference panel of the 1000 Genomes Project based on SNP data detected by sequencing with 4× depth. All of the imputation software had a weaker performance in low minor allele frequency SNP regions because of the bias of reference or software. In the future, more comprehensive reference panels or new algorithm developments may rise up to this challenge.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000489758","citationCount":"44","resultStr":"{\"title\":\"Comprehensive Assessment of Genotype Imputation Performance.\",\"authors\":\"Shuo Shi, Na Yuan, Ming Yang, Zhenglin Du, Jinyue Wang, Xin Sheng, Jiayan Wu, Jingfa Xiao\",\"doi\":\"10.1159/000489758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genotype imputation is a process of estimating missing ge-notypes from the haplotype or genotype reference panel. It can effectively boost the power of detecting single nucleotide polymorphisms (SNPs) in genome-wide association studies, integrate multi-studies for meta-analysis, and be applied in fine-mapping studies. The performance of genotype imputation is affected by many factors, including software, reference selection, sample size, and SNP density/sequencing coverage. A systematical evaluation of the imputation performance of current popular software will benefit future studies. Here, we evaluate imputation performances of Beagle4.1, IMPUTE2, MACH+Minimac3, and SHAPEIT2+ IM-PUTE2 using test samples of East Asian ancestry and references of the 1000 Genomes Project. The result indicated the accuracy of IMPUTE2 (99.18%) is slightly higher than that of the others (Beagle4.1: 98.94%, MACH+Minimac3: 98.51%, and SHAPEIT2+IMPUTE2: 99.08%). To achieve good and stable imputation quality, the minimum requirement of SNP density needs to be > 200/Mb. The imputation accuracies of IMPUTE2 and Beagle4.1 were under the minor influence of the study sample size. The contribution extent of reference to genotype imputation performance relied on software selection. We assessed the imputation performance on SNPs generated by next-generation whole genome sequencing and found that SNP sets detected by sequencing with 15× depth could be mostly got by imputing from the haplotype reference panel of the 1000 Genomes Project based on SNP data detected by sequencing with 4× depth. All of the imputation software had a weaker performance in low minor allele frequency SNP regions because of the bias of reference or software. In the future, more comprehensive reference panels or new algorithm developments may rise up to this challenge.</p>\",\"PeriodicalId\":13226,\"journal\":{\"name\":\"Human Heredity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000489758\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000489758\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000489758","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Comprehensive Assessment of Genotype Imputation Performance.
Genotype imputation is a process of estimating missing ge-notypes from the haplotype or genotype reference panel. It can effectively boost the power of detecting single nucleotide polymorphisms (SNPs) in genome-wide association studies, integrate multi-studies for meta-analysis, and be applied in fine-mapping studies. The performance of genotype imputation is affected by many factors, including software, reference selection, sample size, and SNP density/sequencing coverage. A systematical evaluation of the imputation performance of current popular software will benefit future studies. Here, we evaluate imputation performances of Beagle4.1, IMPUTE2, MACH+Minimac3, and SHAPEIT2+ IM-PUTE2 using test samples of East Asian ancestry and references of the 1000 Genomes Project. The result indicated the accuracy of IMPUTE2 (99.18%) is slightly higher than that of the others (Beagle4.1: 98.94%, MACH+Minimac3: 98.51%, and SHAPEIT2+IMPUTE2: 99.08%). To achieve good and stable imputation quality, the minimum requirement of SNP density needs to be > 200/Mb. The imputation accuracies of IMPUTE2 and Beagle4.1 were under the minor influence of the study sample size. The contribution extent of reference to genotype imputation performance relied on software selection. We assessed the imputation performance on SNPs generated by next-generation whole genome sequencing and found that SNP sets detected by sequencing with 15× depth could be mostly got by imputing from the haplotype reference panel of the 1000 Genomes Project based on SNP data detected by sequencing with 4× depth. All of the imputation software had a weaker performance in low minor allele frequency SNP regions because of the bias of reference or software. In the future, more comprehensive reference panels or new algorithm developments may rise up to this challenge.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.