{"title":"酒精和尼古丁共同依赖的遗传研究和共病性杂交性状建模。","authors":"Heping Zhang, Dungang Liu, Jiwei Zhao, Xuan Bi","doi":"10.1214/18-AOAS1156","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel multivariate model for analyzing hybrid traits and identifying genetic factors for comorbid conditions. Comorbidity is a common phenomenon in mental health in which an individual suffers from multiple disorders simultaneously. For example, in the Study of Addiction: Genetics and Environment (SAGE), alcohol and nicotine addiction were recorded through multiple assessments that we refer to as hybrid traits. Statistical inference for studying the genetic basis of hybrid traits has not been well-developed. Recent rank-based methods have been utilized for conducting association analyses of hybrid traits but do not inform the strength or direction of effects. To overcome this limitation, a parametric modeling framework is imperative. Although such parametric frameworks have been proposed in theory, they are neither well-developed nor extensively used in practice due to their reliance on complicated likelihood functions that have high computational complexity. Many existing parametric frameworks tend to instead use pseudo-likelihoods to reduce computational burdens. Here, we develop a model fitting algorithm for the full likelihood. Our extensive simulation studies demonstrate that inference based on the full likelihood can control the type-I error rate, and gains power and improves the effect size estimation when compared with several existing methods for hybrid models. These advantages remain even if the distribution of the latent variables is misspecified. After analyzing the SAGE data, we identify three genetic variants (rs7672861, rs958331, rs879330) that are significantly associated with the comorbidity of alcohol and nicotine addiction at the chromosome-wide level. Moreover, our approach has greater power in this analysis than several existing methods for hybrid traits.Although the analysis of the SAGE data motivated us to develop the model, it can be broadly applied to analyze any hybrid responses.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"12 4","pages":"2359-2378"},"PeriodicalIF":1.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338437/pdf/nihms-997314.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling Hybrid Traits for Comorbidity and Genetic Studies of Alcohol and Nicotine Co-Dependence.\",\"authors\":\"Heping Zhang, Dungang Liu, Jiwei Zhao, Xuan Bi\",\"doi\":\"10.1214/18-AOAS1156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a novel multivariate model for analyzing hybrid traits and identifying genetic factors for comorbid conditions. Comorbidity is a common phenomenon in mental health in which an individual suffers from multiple disorders simultaneously. For example, in the Study of Addiction: Genetics and Environment (SAGE), alcohol and nicotine addiction were recorded through multiple assessments that we refer to as hybrid traits. Statistical inference for studying the genetic basis of hybrid traits has not been well-developed. Recent rank-based methods have been utilized for conducting association analyses of hybrid traits but do not inform the strength or direction of effects. To overcome this limitation, a parametric modeling framework is imperative. Although such parametric frameworks have been proposed in theory, they are neither well-developed nor extensively used in practice due to their reliance on complicated likelihood functions that have high computational complexity. Many existing parametric frameworks tend to instead use pseudo-likelihoods to reduce computational burdens. Here, we develop a model fitting algorithm for the full likelihood. Our extensive simulation studies demonstrate that inference based on the full likelihood can control the type-I error rate, and gains power and improves the effect size estimation when compared with several existing methods for hybrid models. These advantages remain even if the distribution of the latent variables is misspecified. After analyzing the SAGE data, we identify three genetic variants (rs7672861, rs958331, rs879330) that are significantly associated with the comorbidity of alcohol and nicotine addiction at the chromosome-wide level. Moreover, our approach has greater power in this analysis than several existing methods for hybrid traits.Although the analysis of the SAGE data motivated us to develop the model, it can be broadly applied to analyze any hybrid responses.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"12 4\",\"pages\":\"2359-2378\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338437/pdf/nihms-997314.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-AOAS1156\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOAS1156","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Modeling Hybrid Traits for Comorbidity and Genetic Studies of Alcohol and Nicotine Co-Dependence.
We propose a novel multivariate model for analyzing hybrid traits and identifying genetic factors for comorbid conditions. Comorbidity is a common phenomenon in mental health in which an individual suffers from multiple disorders simultaneously. For example, in the Study of Addiction: Genetics and Environment (SAGE), alcohol and nicotine addiction were recorded through multiple assessments that we refer to as hybrid traits. Statistical inference for studying the genetic basis of hybrid traits has not been well-developed. Recent rank-based methods have been utilized for conducting association analyses of hybrid traits but do not inform the strength or direction of effects. To overcome this limitation, a parametric modeling framework is imperative. Although such parametric frameworks have been proposed in theory, they are neither well-developed nor extensively used in practice due to their reliance on complicated likelihood functions that have high computational complexity. Many existing parametric frameworks tend to instead use pseudo-likelihoods to reduce computational burdens. Here, we develop a model fitting algorithm for the full likelihood. Our extensive simulation studies demonstrate that inference based on the full likelihood can control the type-I error rate, and gains power and improves the effect size estimation when compared with several existing methods for hybrid models. These advantages remain even if the distribution of the latent variables is misspecified. After analyzing the SAGE data, we identify three genetic variants (rs7672861, rs958331, rs879330) that are significantly associated with the comorbidity of alcohol and nicotine addiction at the chromosome-wide level. Moreover, our approach has greater power in this analysis than several existing methods for hybrid traits.Although the analysis of the SAGE data motivated us to develop the model, it can be broadly applied to analyze any hybrid responses.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.