酒精和尼古丁共同依赖的遗传研究和共病性杂交性状建模。

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2018-12-01 Epub Date: 2018-11-13 DOI:10.1214/18-AOAS1156
Heping Zhang, Dungang Liu, Jiwei Zhao, Xuan Bi
{"title":"酒精和尼古丁共同依赖的遗传研究和共病性杂交性状建模。","authors":"Heping Zhang, Dungang Liu, Jiwei Zhao, Xuan Bi","doi":"10.1214/18-AOAS1156","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel multivariate model for analyzing hybrid traits and identifying genetic factors for comorbid conditions. Comorbidity is a common phenomenon in mental health in which an individual suffers from multiple disorders simultaneously. For example, in the Study of Addiction: Genetics and Environment (SAGE), alcohol and nicotine addiction were recorded through multiple assessments that we refer to as hybrid traits. Statistical inference for studying the genetic basis of hybrid traits has not been well-developed. Recent rank-based methods have been utilized for conducting association analyses of hybrid traits but do not inform the strength or direction of effects. To overcome this limitation, a parametric modeling framework is imperative. Although such parametric frameworks have been proposed in theory, they are neither well-developed nor extensively used in practice due to their reliance on complicated likelihood functions that have high computational complexity. Many existing parametric frameworks tend to instead use pseudo-likelihoods to reduce computational burdens. Here, we develop a model fitting algorithm for the full likelihood. Our extensive simulation studies demonstrate that inference based on the full likelihood can control the type-I error rate, and gains power and improves the effect size estimation when compared with several existing methods for hybrid models. These advantages remain even if the distribution of the latent variables is misspecified. After analyzing the SAGE data, we identify three genetic variants (rs7672861, rs958331, rs879330) that are significantly associated with the comorbidity of alcohol and nicotine addiction at the chromosome-wide level. Moreover, our approach has greater power in this analysis than several existing methods for hybrid traits.Although the analysis of the SAGE data motivated us to develop the model, it can be broadly applied to analyze any hybrid responses.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"12 4","pages":"2359-2378"},"PeriodicalIF":1.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338437/pdf/nihms-997314.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling Hybrid Traits for Comorbidity and Genetic Studies of Alcohol and Nicotine Co-Dependence.\",\"authors\":\"Heping Zhang, Dungang Liu, Jiwei Zhao, Xuan Bi\",\"doi\":\"10.1214/18-AOAS1156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a novel multivariate model for analyzing hybrid traits and identifying genetic factors for comorbid conditions. Comorbidity is a common phenomenon in mental health in which an individual suffers from multiple disorders simultaneously. For example, in the Study of Addiction: Genetics and Environment (SAGE), alcohol and nicotine addiction were recorded through multiple assessments that we refer to as hybrid traits. Statistical inference for studying the genetic basis of hybrid traits has not been well-developed. Recent rank-based methods have been utilized for conducting association analyses of hybrid traits but do not inform the strength or direction of effects. To overcome this limitation, a parametric modeling framework is imperative. Although such parametric frameworks have been proposed in theory, they are neither well-developed nor extensively used in practice due to their reliance on complicated likelihood functions that have high computational complexity. Many existing parametric frameworks tend to instead use pseudo-likelihoods to reduce computational burdens. Here, we develop a model fitting algorithm for the full likelihood. Our extensive simulation studies demonstrate that inference based on the full likelihood can control the type-I error rate, and gains power and improves the effect size estimation when compared with several existing methods for hybrid models. These advantages remain even if the distribution of the latent variables is misspecified. After analyzing the SAGE data, we identify three genetic variants (rs7672861, rs958331, rs879330) that are significantly associated with the comorbidity of alcohol and nicotine addiction at the chromosome-wide level. Moreover, our approach has greater power in this analysis than several existing methods for hybrid traits.Although the analysis of the SAGE data motivated us to develop the model, it can be broadly applied to analyze any hybrid responses.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"12 4\",\"pages\":\"2359-2378\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338437/pdf/nihms-997314.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-AOAS1156\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOAS1156","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新的多变量模型,用于分析杂交性状和识别共病条件的遗传因素。共病是心理健康中的一种常见现象,一个人同时患有多种疾病。例如,在成瘾研究:遗传与环境(SAGE)中,酒精和尼古丁成瘾是通过我们称之为混合特征的多重评估记录的。用于研究杂交性状遗传基础的统计推断还不完善。最近基于等级的方法已被用于进行杂交性状的关联分析,但没有告知影响的强度或方向。为了克服这一限制,参数化建模框架势在必行。尽管在理论上已经提出了这样的参数框架,但由于它们依赖于具有高计算复杂性的复杂似然函数,因此它们既没有发展完善,也没有在实践中广泛使用。许多现有的参数框架倾向于使用伪似然来减少计算负担。在这里,我们开发了一个完全似然的模型拟合算法。我们广泛的仿真研究表明,与混合模型的几种现有方法相比,基于全似然的推理可以控制I型错误率,并提高功率和改进效果大小估计。即使潜在变量的分布被错误地指定,这些优势仍然存在。在分析SAGE数据后,我们确定了三种基因变体(rs7672861、rs958331、rs879330),它们在染色体范围内与酒精和尼古丁成瘾的共病显著相关。此外,我们的方法在这一分析中比现有的几种杂交性状方法具有更大的力量。尽管SAGE数据的分析促使我们开发该模型,但它可以广泛应用于分析任何混合反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Hybrid Traits for Comorbidity and Genetic Studies of Alcohol and Nicotine Co-Dependence.

We propose a novel multivariate model for analyzing hybrid traits and identifying genetic factors for comorbid conditions. Comorbidity is a common phenomenon in mental health in which an individual suffers from multiple disorders simultaneously. For example, in the Study of Addiction: Genetics and Environment (SAGE), alcohol and nicotine addiction were recorded through multiple assessments that we refer to as hybrid traits. Statistical inference for studying the genetic basis of hybrid traits has not been well-developed. Recent rank-based methods have been utilized for conducting association analyses of hybrid traits but do not inform the strength or direction of effects. To overcome this limitation, a parametric modeling framework is imperative. Although such parametric frameworks have been proposed in theory, they are neither well-developed nor extensively used in practice due to their reliance on complicated likelihood functions that have high computational complexity. Many existing parametric frameworks tend to instead use pseudo-likelihoods to reduce computational burdens. Here, we develop a model fitting algorithm for the full likelihood. Our extensive simulation studies demonstrate that inference based on the full likelihood can control the type-I error rate, and gains power and improves the effect size estimation when compared with several existing methods for hybrid models. These advantages remain even if the distribution of the latent variables is misspecified. After analyzing the SAGE data, we identify three genetic variants (rs7672861, rs958331, rs879330) that are significantly associated with the comorbidity of alcohol and nicotine addiction at the chromosome-wide level. Moreover, our approach has greater power in this analysis than several existing methods for hybrid traits.Although the analysis of the SAGE data motivated us to develop the model, it can be broadly applied to analyze any hybrid responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE. PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1