{"title":"利用T4 DNA连接酶合成骨架修饰寡核苷酸","authors":"Donaat Kestemont, Piet Herdewijn, Marleen Renders","doi":"10.1002/cpch.62","DOIUrl":null,"url":null,"abstract":"<p>T4 DNA ligase in high concentrations of certain crowding agents and cosolutes catalyzes the synthesis of a series of backbone-modified oligonucleotides that are difficult to obtain chemically. Backbone-modified nucleic acids are often enzymatically and chemically more stable, making them interesting as potential diagnostic or therapeutic agents, as a biosafety tool, or in nanotechnology. In this article, we describe a small-scale experiment to probe the efficiency of the ligation reaction of modified oligonucleotides in the presence of 3 M betaine and 10% PEG 8000, followed by large-scale ligation with subsequent isolation of the ligated oligonucleotide. The correct product formation can be verified using denaturing polyacrylamide gel electrophoresis and mass spectrometry. © 2019 by John Wiley & Sons, Inc.</p>","PeriodicalId":38051,"journal":{"name":"Current protocols in chemical biology","volume":"11 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpch.62","citationCount":"3","resultStr":"{\"title\":\"Enzymatic Synthesis of Backbone-Modified Oligonucleotides Using T4 DNA Ligase\",\"authors\":\"Donaat Kestemont, Piet Herdewijn, Marleen Renders\",\"doi\":\"10.1002/cpch.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>T4 DNA ligase in high concentrations of certain crowding agents and cosolutes catalyzes the synthesis of a series of backbone-modified oligonucleotides that are difficult to obtain chemically. Backbone-modified nucleic acids are often enzymatically and chemically more stable, making them interesting as potential diagnostic or therapeutic agents, as a biosafety tool, or in nanotechnology. In this article, we describe a small-scale experiment to probe the efficiency of the ligation reaction of modified oligonucleotides in the presence of 3 M betaine and 10% PEG 8000, followed by large-scale ligation with subsequent isolation of the ligated oligonucleotide. The correct product formation can be verified using denaturing polyacrylamide gel electrophoresis and mass spectrometry. © 2019 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":38051,\"journal\":{\"name\":\"Current protocols in chemical biology\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpch.62\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in chemical biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpch.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in chemical biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpch.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3