利用酶富集的大肠杆菌裂解物进行柠檬烯的无细胞生物合成。

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS Synthetic biology (Oxford, England) Pub Date : 2019-01-01 Epub Date: 2019-01-14 DOI:10.1093/synbio/ysz003
Quentin M Dudley, Connor J Nash, Michael C Jewett
{"title":"利用酶富集的大肠杆菌裂解物进行柠檬烯的无细胞生物合成。","authors":"Quentin M Dudley, Connor J Nash, Michael C Jewett","doi":"10.1093/synbio/ysz003","DOIUrl":null,"url":null,"abstract":"<p><p>Isoprenoids are an attractive class of metabolites for enzymatic synthesis from renewable substrates. However, metabolic engineering of microorganisms for monoterpenoid production is limited by the need for time-consuming, and often non-intuitive, combinatorial tuning of biosynthetic pathway variations to meet design criteria. Towards alleviating this limitation, the goal of this work was to build a modular, cell-free platform for construction and testing of monoterpenoid pathways, using the fragrance and flavoring molecule limonene as a model. In this platform, multiple <i>Escherichia coli</i> lysates, each enriched with a single overexpressed pathway enzyme, are mixed to construct the full biosynthetic pathway. First, we show the ability to synthesize limonene from six enriched lysates with mevalonate substrate, an adenosine triphosphate (ATP) source, and cofactors. Next, we extend the pathway to use glucose as a substrate, which relies on native metabolism in the extract to convert glucose to acetyl-CoA along with three additional enzymes to convert acetyl-CoA to mevalonate. We find that the native <i>E. coli</i> farnesyl diphosphate synthase (IspA) is active in the lysate and diverts flux from the pathway intermediate geranyl pyrophospahte to farnesyl pyrophsophate and the byproduct farnesol. By adjusting the relative levels of cofactors NAD<sup>+</sup>, ATP and CoA, the system can synthesize 0.66 mM (90.2 mg l<sup>-1</sup>) limonene over 24 h, a productivity of 3.8 mg l<sup>-1</sup> h<sup>-1</sup>. Our results highlight the flexibility of crude lysates to sustain complex metabolism and, by activating a glucose-to-limonene pathway with 9 heterologous enzymes encompassing 20 biosynthetic steps, expands an approach of using enzyme-enriched lysates for constructing, characterizing and prototyping enzymatic pathways.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"4 1","pages":"ysz003"},"PeriodicalIF":2.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bb/55/ysz003.PMC6407499.pdf","citationCount":"0","resultStr":"{\"title\":\"Cell-free biosynthesis of limonene using enzyme-enriched <i>Escherichia coli</i> lysates.\",\"authors\":\"Quentin M Dudley, Connor J Nash, Michael C Jewett\",\"doi\":\"10.1093/synbio/ysz003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Isoprenoids are an attractive class of metabolites for enzymatic synthesis from renewable substrates. However, metabolic engineering of microorganisms for monoterpenoid production is limited by the need for time-consuming, and often non-intuitive, combinatorial tuning of biosynthetic pathway variations to meet design criteria. Towards alleviating this limitation, the goal of this work was to build a modular, cell-free platform for construction and testing of monoterpenoid pathways, using the fragrance and flavoring molecule limonene as a model. In this platform, multiple <i>Escherichia coli</i> lysates, each enriched with a single overexpressed pathway enzyme, are mixed to construct the full biosynthetic pathway. First, we show the ability to synthesize limonene from six enriched lysates with mevalonate substrate, an adenosine triphosphate (ATP) source, and cofactors. Next, we extend the pathway to use glucose as a substrate, which relies on native metabolism in the extract to convert glucose to acetyl-CoA along with three additional enzymes to convert acetyl-CoA to mevalonate. We find that the native <i>E. coli</i> farnesyl diphosphate synthase (IspA) is active in the lysate and diverts flux from the pathway intermediate geranyl pyrophospahte to farnesyl pyrophsophate and the byproduct farnesol. By adjusting the relative levels of cofactors NAD<sup>+</sup>, ATP and CoA, the system can synthesize 0.66 mM (90.2 mg l<sup>-1</sup>) limonene over 24 h, a productivity of 3.8 mg l<sup>-1</sup> h<sup>-1</sup>. Our results highlight the flexibility of crude lysates to sustain complex metabolism and, by activating a glucose-to-limonene pathway with 9 heterologous enzymes encompassing 20 biosynthetic steps, expands an approach of using enzyme-enriched lysates for constructing, characterizing and prototyping enzymatic pathways.</p>\",\"PeriodicalId\":74902,\"journal\":{\"name\":\"Synthetic biology (Oxford, England)\",\"volume\":\"4 1\",\"pages\":\"ysz003\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bb/55/ysz003.PMC6407499.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic biology (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysz003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysz003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

异萜类化合物是一类极具吸引力的代谢物,可通过酶法从可再生底物中合成。然而,由于需要对生物合成途径的变化进行耗时且往往不直观的组合调整以满足设计标准,因此用于单萜生产的微生物代谢工程受到了限制。为了缓解这一限制,这项工作的目标是以香料和调味分子柠檬烯为模型,建立一个模块化的无细胞平台,用于构建和测试单萜类化合物的合成途径。在这个平台中,多个大肠杆菌裂解物(每个裂解物都富含一种过表达的途径酶)混合在一起,构建出完整的生物合成途径。首先,我们展示了利用甲羟戊酸底物、三磷酸腺苷(ATP)源和辅助因子从六个富集裂解物合成柠檬烯的能力。接下来,我们扩展了使用葡萄糖作为底物的途径,这依赖于提取物中将葡萄糖转化为乙酰-CoA的原生代谢以及将乙酰-CoA转化为甲羟戊酸的另外三种酶。我们发现,大肠杆菌的原生二磷酸法尼酯合成酶(IspA)在裂解液中处于活跃状态,并将通路中间体香叶基焦磷酸盐的通量转移到焦磷酸法尼酯和副产品法尼醇上。通过调整辅助因子 NAD+、ATP 和 CoA 的相对水平,该系统可在 24 小时内合成 0.66 mM(90.2 mg l-1)的柠檬烯,生产率为 3.8 mg l-1 h-1。我们的研究结果突显了粗裂解物在维持复杂新陈代谢方面的灵活性,并通过激活包含 20 个生物合成步骤的 9 种异源酶的葡萄糖-柠檬烯途径,拓展了使用酶富集裂解物构建、鉴定和原型开发酶途径的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates.

Isoprenoids are an attractive class of metabolites for enzymatic synthesis from renewable substrates. However, metabolic engineering of microorganisms for monoterpenoid production is limited by the need for time-consuming, and often non-intuitive, combinatorial tuning of biosynthetic pathway variations to meet design criteria. Towards alleviating this limitation, the goal of this work was to build a modular, cell-free platform for construction and testing of monoterpenoid pathways, using the fragrance and flavoring molecule limonene as a model. In this platform, multiple Escherichia coli lysates, each enriched with a single overexpressed pathway enzyme, are mixed to construct the full biosynthetic pathway. First, we show the ability to synthesize limonene from six enriched lysates with mevalonate substrate, an adenosine triphosphate (ATP) source, and cofactors. Next, we extend the pathway to use glucose as a substrate, which relies on native metabolism in the extract to convert glucose to acetyl-CoA along with three additional enzymes to convert acetyl-CoA to mevalonate. We find that the native E. coli farnesyl diphosphate synthase (IspA) is active in the lysate and diverts flux from the pathway intermediate geranyl pyrophospahte to farnesyl pyrophsophate and the byproduct farnesol. By adjusting the relative levels of cofactors NAD+, ATP and CoA, the system can synthesize 0.66 mM (90.2 mg l-1) limonene over 24 h, a productivity of 3.8 mg l-1 h-1. Our results highlight the flexibility of crude lysates to sustain complex metabolism and, by activating a glucose-to-limonene pathway with 9 heterologous enzymes encompassing 20 biosynthetic steps, expands an approach of using enzyme-enriched lysates for constructing, characterizing and prototyping enzymatic pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New gene sensors enable precise cell monitoring and control without altering gene sequence. In vitro transcription-based biosensing of glycolate for prototyping of a complex enzyme cascade. Cell-free synthesis of infective phages from in vitro assembled phage genomes for efficient phage engineering and production of large phage libraries. Data hazards in synthetic biology. Navigating the 'moral hazard' argument in synthetic biology's application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1