神经系统控制的磁策略。

IF 12.1 1区 医学 Q1 NEUROSCIENCES Annual review of neuroscience Pub Date : 2019-07-08 Epub Date: 2019-04-02 DOI:10.1146/annurev-neuro-070918-050241
Michael G Christiansen, Alexander W Senko, Polina Anikeeva
{"title":"神经系统控制的磁策略。","authors":"Michael G Christiansen,&nbsp;Alexander W Senko,&nbsp;Polina Anikeeva","doi":"10.1146/annurev-neuro-070918-050241","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic fields pass through tissue undiminished and without producing harmful effects, motivating their use as a wireless, minimally invasive means to control neural activity. Here, we review mechanisms and techniques coupling magnetic fields to changes in electrochemical potentials across neuronal membranes. Biological magnetoreception, although incompletely understood, is discussed as a potential source of inspiration. The emergence of magnetic properties in materials is reviewed to clarify the distinction between biomolecules containing transition metals and ferrite nanoparticles that exhibit significant net moments. We describe recent developments in the use of magnetic nanomaterials as transducers converting magnetic stimuli to forms readily perceived by neurons and discuss opportunities for multiplexed and bidirectional control as well as the challenges posed by delivery to the brain. The variety of magnetic field conditions and mechanisms by which they can be coupled to neuronal signaling cascades highlights the desirability of continued interchange between magnetism physics and neurobiology.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"42 ","pages":"271-293"},"PeriodicalIF":12.1000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-070918-050241","citationCount":"37","resultStr":"{\"title\":\"Magnetic Strategies for Nervous System Control.\",\"authors\":\"Michael G Christiansen,&nbsp;Alexander W Senko,&nbsp;Polina Anikeeva\",\"doi\":\"10.1146/annurev-neuro-070918-050241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic fields pass through tissue undiminished and without producing harmful effects, motivating their use as a wireless, minimally invasive means to control neural activity. Here, we review mechanisms and techniques coupling magnetic fields to changes in electrochemical potentials across neuronal membranes. Biological magnetoreception, although incompletely understood, is discussed as a potential source of inspiration. The emergence of magnetic properties in materials is reviewed to clarify the distinction between biomolecules containing transition metals and ferrite nanoparticles that exhibit significant net moments. We describe recent developments in the use of magnetic nanomaterials as transducers converting magnetic stimuli to forms readily perceived by neurons and discuss opportunities for multiplexed and bidirectional control as well as the challenges posed by delivery to the brain. The variety of magnetic field conditions and mechanisms by which they can be coupled to neuronal signaling cascades highlights the desirability of continued interchange between magnetism physics and neurobiology.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\"42 \",\"pages\":\"271-293\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-neuro-070918-050241\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-070918-050241\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-070918-050241","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 37

摘要

磁场穿过组织时不会减弱,也不会产生有害影响,这促使它们成为一种无线的、微创的控制神经活动的手段。在这里,我们回顾了磁场耦合神经元膜电化学电位变化的机制和技术。生物磁感受,虽然不完全了解,讨论作为一个潜在的灵感来源。本文回顾了磁性材料的出现,以澄清含有过渡金属的生物分子和具有显著净力矩的铁氧体纳米颗粒之间的区别。我们描述了磁性纳米材料作为换能器的最新发展,将磁刺激转换为易于被神经元感知的形式,并讨论了多路和双向控制的机会,以及传递到大脑所带来的挑战。磁场条件和机制的多样性,它们可以耦合到神经元信号级联,突出了磁物理学和神经生物学之间持续交流的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic Strategies for Nervous System Control.

Magnetic fields pass through tissue undiminished and without producing harmful effects, motivating their use as a wireless, minimally invasive means to control neural activity. Here, we review mechanisms and techniques coupling magnetic fields to changes in electrochemical potentials across neuronal membranes. Biological magnetoreception, although incompletely understood, is discussed as a potential source of inspiration. The emergence of magnetic properties in materials is reviewed to clarify the distinction between biomolecules containing transition metals and ferrite nanoparticles that exhibit significant net moments. We describe recent developments in the use of magnetic nanomaterials as transducers converting magnetic stimuli to forms readily perceived by neurons and discuss opportunities for multiplexed and bidirectional control as well as the challenges posed by delivery to the brain. The variety of magnetic field conditions and mechanisms by which they can be coupled to neuronal signaling cascades highlights the desirability of continued interchange between magnetism physics and neurobiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
期刊最新文献
A Whole-Brain Topographic Ontology. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Predictive Processing: A Circuit Approach to Psychosis. Neural Control of Naturalistic Behavior Choices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1