注射体--一种用于向哺乳动物细胞注射蛋白质的复杂纳米机器。

Q1 Medicine EcoSal Plus Pub Date : 2019-03-01 DOI:10.1128/ecosalplus.ESP-0039-2018
Maria Lara-Tejero, Jorge E Galán
{"title":"注射体--一种用于向哺乳动物细胞注射蛋白质的复杂纳米机器。","authors":"Maria Lara-Tejero, Jorge E Galán","doi":"10.1128/ecosalplus.ESP-0039-2018","DOIUrl":null,"url":null,"abstract":"<p><p>Type III protein secretion systems (T3SSs), or injectisomes, are multiprotein nanomachines present in many Gram-negative bacteria that have a sustained long-standing close relationship with a eukaryotic host. These secretion systems have evolved to modulate host cellular functions through the activity of the effector proteins they deliver. To reach their destination, T3SS effectors must cross the multibarrier bacterial envelope and the eukaryotic cell membrane. Passage through the bacterial envelope is mediated by the needle complex, a central component of T3SSs that expands both the inner and outer membranes of Gram-negative bacteria. A set of T3SS secreted proteins, known as translocators, form a channel in the eukaryotic plasma membrane through which the effector proteins are delivered to reach the host cell cytosol. While the effector proteins are tailored to the specific lifestyle of the bacterium that encodes them, the injectisome is conserved among the different T3SSs. The central role of T3SSs in pathogenesis and their high degree of conservation make them a desirable target for the development of antimicrobial therapies against several important bacterial pathogens.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"8 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450406/pdf/nihms-1010190.pdf","citationCount":"0","resultStr":"{\"title\":\"The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells.\",\"authors\":\"Maria Lara-Tejero, Jorge E Galán\",\"doi\":\"10.1128/ecosalplus.ESP-0039-2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type III protein secretion systems (T3SSs), or injectisomes, are multiprotein nanomachines present in many Gram-negative bacteria that have a sustained long-standing close relationship with a eukaryotic host. These secretion systems have evolved to modulate host cellular functions through the activity of the effector proteins they deliver. To reach their destination, T3SS effectors must cross the multibarrier bacterial envelope and the eukaryotic cell membrane. Passage through the bacterial envelope is mediated by the needle complex, a central component of T3SSs that expands both the inner and outer membranes of Gram-negative bacteria. A set of T3SS secreted proteins, known as translocators, form a channel in the eukaryotic plasma membrane through which the effector proteins are delivered to reach the host cell cytosol. While the effector proteins are tailored to the specific lifestyle of the bacterium that encodes them, the injectisome is conserved among the different T3SSs. The central role of T3SSs in pathogenesis and their high degree of conservation make them a desirable target for the development of antimicrobial therapies against several important bacterial pathogens.</p>\",\"PeriodicalId\":11500,\"journal\":{\"name\":\"EcoSal Plus\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450406/pdf/nihms-1010190.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoSal Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/ecosalplus.ESP-0039-2018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0039-2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

III 型蛋白质分泌系统(T3SSs)或注射体是存在于许多革兰氏阴性细菌中的多蛋白纳米机器,它们与真核宿主有着长期持续的密切关系。这些分泌系统通过传递效应蛋白的活性来调节宿主细胞的功能。T3SS 效应蛋白必须穿过多屏障细菌包膜和真核细胞膜才能到达目的地。穿过细菌包膜是由针状复合体介导的,针状复合体是 T3SS 的核心成分,它能扩张革兰氏阴性细菌的内膜和外膜。一组被称为转运体的 T3SS 分泌蛋白在真核质膜上形成一个通道,效应蛋白通过该通道到达宿主细胞的细胞质。虽然效应蛋白是根据编码它们的细菌的特定生活方式定制的,但注射体在不同的 T3SS 之间是一致的。T3SSs 在致病过程中的核心作用及其高度保守性使其成为开发针对几种重要细菌病原体的抗菌疗法的理想目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells.

Type III protein secretion systems (T3SSs), or injectisomes, are multiprotein nanomachines present in many Gram-negative bacteria that have a sustained long-standing close relationship with a eukaryotic host. These secretion systems have evolved to modulate host cellular functions through the activity of the effector proteins they deliver. To reach their destination, T3SS effectors must cross the multibarrier bacterial envelope and the eukaryotic cell membrane. Passage through the bacterial envelope is mediated by the needle complex, a central component of T3SSs that expands both the inner and outer membranes of Gram-negative bacteria. A set of T3SS secreted proteins, known as translocators, form a channel in the eukaryotic plasma membrane through which the effector proteins are delivered to reach the host cell cytosol. While the effector proteins are tailored to the specific lifestyle of the bacterium that encodes them, the injectisome is conserved among the different T3SSs. The central role of T3SSs in pathogenesis and their high degree of conservation make them a desirable target for the development of antimicrobial therapies against several important bacterial pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EcoSal Plus
EcoSal Plus Immunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍: EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.
期刊最新文献
Type IV pili of Enterobacteriaceae species. Transcription activation in Escherichia coli and Salmonella. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1