Z估计框架中许多函数参数的一致有效正则化后置信域。

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY Annals of Statistics Pub Date : 2018-12-01 Epub Date: 2018-09-11 DOI:10.1214/17-AOS1671
Alexandre Belloni, Victor Chernozhukov, Denis Chetverikov, Ying Wei
{"title":"Z估计框架中许多函数参数的一致有效正则化后置信域。","authors":"Alexandre Belloni,&nbsp;Victor Chernozhukov,&nbsp;Denis Chetverikov,&nbsp;Ying Wei","doi":"10.1214/17-AOS1671","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we develop procedures to construct simultaneous confidence bands for <math><mover><mi>p</mi> <mo>˜</mo></mover> </math> potentially infinite-dimensional parameters after model selection for general moment condition models where <math> <mrow><mover><mi>p</mi> <mo>˜</mo></mover> </mrow> </math> is potentially much larger than the sample size of available data, <i>n</i>. This allows us to cover settings with functional response data where each of the <math> <mrow><mover><mi>p</mi> <mo>˜</mo></mover> </mrow> </math> parameters is a function. The procedure is based on the construction of score functions that satisfy Neyman orthogonality condition approximately. The proposed simultaneous confidence bands rely on uniform central limit theorems for high-dimensional vectors (and not on Donsker arguments as we allow for <math> <mrow><mover><mi>p</mi> <mo>˜</mo></mover> <mo>≫</mo> <mi>n</mi></mrow> </math> ). To construct the bands, we employ a multiplier bootstrap procedure which is computationally efficient as it only involves resampling the estimated score functions (and does not require resolving the high-dimensional optimization problems). We formally apply the general theory to inference on regression coefficient process in the distribution regression model with a logistic link, where two implementations are analyzed in detail. Simulations and an application to real data are provided to help illustrate the applicability of the results.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"46 6B","pages":"3643-3675"},"PeriodicalIF":3.2000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/17-AOS1671","citationCount":"71","resultStr":"{\"title\":\"UNIFORMLY VALID POST-REGULARIZATION CONFIDENCE REGIONS FOR MANY FUNCTIONAL PARAMETERS IN Z-ESTIMATION FRAMEWORK.\",\"authors\":\"Alexandre Belloni,&nbsp;Victor Chernozhukov,&nbsp;Denis Chetverikov,&nbsp;Ying Wei\",\"doi\":\"10.1214/17-AOS1671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we develop procedures to construct simultaneous confidence bands for <math><mover><mi>p</mi> <mo>˜</mo></mover> </math> potentially infinite-dimensional parameters after model selection for general moment condition models where <math> <mrow><mover><mi>p</mi> <mo>˜</mo></mover> </mrow> </math> is potentially much larger than the sample size of available data, <i>n</i>. This allows us to cover settings with functional response data where each of the <math> <mrow><mover><mi>p</mi> <mo>˜</mo></mover> </mrow> </math> parameters is a function. The procedure is based on the construction of score functions that satisfy Neyman orthogonality condition approximately. The proposed simultaneous confidence bands rely on uniform central limit theorems for high-dimensional vectors (and not on Donsker arguments as we allow for <math> <mrow><mover><mi>p</mi> <mo>˜</mo></mover> <mo>≫</mo> <mi>n</mi></mrow> </math> ). To construct the bands, we employ a multiplier bootstrap procedure which is computationally efficient as it only involves resampling the estimated score functions (and does not require resolving the high-dimensional optimization problems). We formally apply the general theory to inference on regression coefficient process in the distribution regression model with a logistic link, where two implementations are analyzed in detail. Simulations and an application to real data are provided to help illustrate the applicability of the results.</p>\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"46 6B\",\"pages\":\"3643-3675\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/17-AOS1671\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/17-AOS1671\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/17-AOS1671","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 71

摘要

在本文中,我们开发了在一般矩条件模型的模型选择后,为p~潜在无限维参数同时构建置信带的程序,其中p~可能远大于可用数据的样本量n。这使我们能够用函数响应数据覆盖设置,其中每个p~参数都是一个函数。该过程基于近似满足奈曼正交性条件的得分函数的构造。所提出的同时置信带依赖于高维向量的一致中心极限定理(而不是我们考虑p~n时的Donsker自变量)。为了构建带,我们采用了一种乘法器自举程序,该程序在计算上是高效的,因为它只涉及对估计的得分函数进行重新采样(并且不需要解决高维优化问题)。我们将一般理论正式应用于具有逻辑环节的分布回归模型中回归系数过程的推断,并详细分析了两种实现方式。提供了模拟和对真实数据的应用,以帮助说明结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UNIFORMLY VALID POST-REGULARIZATION CONFIDENCE REGIONS FOR MANY FUNCTIONAL PARAMETERS IN Z-ESTIMATION FRAMEWORK.

In this paper, we develop procedures to construct simultaneous confidence bands for p ˜ potentially infinite-dimensional parameters after model selection for general moment condition models where p ˜ is potentially much larger than the sample size of available data, n. This allows us to cover settings with functional response data where each of the p ˜ parameters is a function. The procedure is based on the construction of score functions that satisfy Neyman orthogonality condition approximately. The proposed simultaneous confidence bands rely on uniform central limit theorems for high-dimensional vectors (and not on Donsker arguments as we allow for p ˜ n ). To construct the bands, we employ a multiplier bootstrap procedure which is computationally efficient as it only involves resampling the estimated score functions (and does not require resolving the high-dimensional optimization problems). We formally apply the general theory to inference on regression coefficient process in the distribution regression model with a logistic link, where two implementations are analyzed in detail. Simulations and an application to real data are provided to help illustrate the applicability of the results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
期刊最新文献
ON BLOCKWISE AND REFERENCE PANEL-BASED ESTIMATORS FOR GENETIC DATA PREDICTION IN HIGH DIMENSIONS. RANK-BASED INDICES FOR TESTING INDEPENDENCE BETWEEN TWO HIGH-DIMENSIONAL VECTORS. Single index Fréchet regression Graphical models for nonstationary time series On lower bounds for the bias-variance trade-off
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1