用于转录组元分析的贝叶斯潜在层次模型,用于检测具有差异表达信号的聚类元模式的生物标志物。

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2019-03-01 Epub Date: 2019-04-10 DOI:10.1214/18-AOAS1188
Zhiguang Huo, Chi Song, George Tseng
{"title":"用于转录组元分析的贝叶斯潜在层次模型,用于检测具有差异表达信号的聚类元模式的生物标志物。","authors":"Zhiguang Huo, Chi Song, George Tseng","doi":"10.1214/18-AOAS1188","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the rapid development of high-throughput experimental techniques and fast-dropping prices, many transcriptomic datasets have been generated and accumulated in the public domain. Meta-analysis combining multiple transcriptomic studies can increase the statistical power to detect disease-related biomarkers. In this paper, we introduce a Bayesian latent hierarchical model to perform transcriptomic meta-analysis. This method is capable of detecting genes that are differentially expressed (DE) in only a subset of the combined studies, and the latent variables help quantify homogeneous and heterogeneous differential expression signals across studies. A tight clustering algorithm is applied to detected biomarkers to capture differential meta-patterns that are informative to guide further biological investigation. Simulations and three examples, including a microarray dataset from metabolism-related knockout mice, an RNA-seq dataset from HIV transgenic rats, and cross-platform datasets from human breast cancer, are used to demonstrate the performance of the proposed method.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"13 1","pages":"340-366"},"PeriodicalIF":1.3000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472949/pdf/nihms-977410.pdf","citationCount":"0","resultStr":"{\"title\":\"BAYESIAN LATENT HIERARCHICAL MODEL FOR TRANSCRIPTOMIC META-ANALYSIS TO DETECT BIOMARKERS WITH CLUSTERED META-PATTERNS OF DIFFERENTIAL EXPRESSION SIGNALS.\",\"authors\":\"Zhiguang Huo, Chi Song, George Tseng\",\"doi\":\"10.1214/18-AOAS1188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the rapid development of high-throughput experimental techniques and fast-dropping prices, many transcriptomic datasets have been generated and accumulated in the public domain. Meta-analysis combining multiple transcriptomic studies can increase the statistical power to detect disease-related biomarkers. In this paper, we introduce a Bayesian latent hierarchical model to perform transcriptomic meta-analysis. This method is capable of detecting genes that are differentially expressed (DE) in only a subset of the combined studies, and the latent variables help quantify homogeneous and heterogeneous differential expression signals across studies. A tight clustering algorithm is applied to detected biomarkers to capture differential meta-patterns that are informative to guide further biological investigation. Simulations and three examples, including a microarray dataset from metabolism-related knockout mice, an RNA-seq dataset from HIV transgenic rats, and cross-platform datasets from human breast cancer, are used to demonstrate the performance of the proposed method.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"13 1\",\"pages\":\"340-366\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472949/pdf/nihms-977410.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-AOAS1188\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOAS1188","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

由于高通量实验技术的快速发展和价格的快速下降,许多转录组数据集已经在公共领域生成和积累。荟萃分析结合多种转录组研究可以提高检测疾病相关生物标志物的统计能力。在本文中,我们引入了一个贝叶斯潜在层次模型来进行转录组元分析。该方法能够检测仅在组合研究的一个子集中差异表达(DE)的基因,并且潜在变量有助于量化研究中的同质和异质差异表达信号。将紧密聚类算法应用于检测到的生物标志物,以捕获差异元模式,这些模式为指导进一步的生物学研究提供了信息。模拟和三个实例,包括来自代谢相关敲除小鼠的微阵列数据集、来自HIV转基因大鼠的RNA-seq数据集和来自人类乳腺癌症的跨平台数据集,用于证明所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BAYESIAN LATENT HIERARCHICAL MODEL FOR TRANSCRIPTOMIC META-ANALYSIS TO DETECT BIOMARKERS WITH CLUSTERED META-PATTERNS OF DIFFERENTIAL EXPRESSION SIGNALS.

Due to the rapid development of high-throughput experimental techniques and fast-dropping prices, many transcriptomic datasets have been generated and accumulated in the public domain. Meta-analysis combining multiple transcriptomic studies can increase the statistical power to detect disease-related biomarkers. In this paper, we introduce a Bayesian latent hierarchical model to perform transcriptomic meta-analysis. This method is capable of detecting genes that are differentially expressed (DE) in only a subset of the combined studies, and the latent variables help quantify homogeneous and heterogeneous differential expression signals across studies. A tight clustering algorithm is applied to detected biomarkers to capture differential meta-patterns that are informative to guide further biological investigation. Simulations and three examples, including a microarray dataset from metabolism-related knockout mice, an RNA-seq dataset from HIV transgenic rats, and cross-platform datasets from human breast cancer, are used to demonstrate the performance of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE. PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1