脂蛋白及其外膜运输。

Q1 Medicine EcoSal Plus Pub Date : 2019-03-01 DOI:10.1128/ecosalplus.ESP-0038-2018
Marcin Grabowicz
{"title":"脂蛋白及其外膜运输。","authors":"Marcin Grabowicz","doi":"10.1128/ecosalplus.ESP-0038-2018","DOIUrl":null,"url":null,"abstract":"<p><p>Lipoproteins are produced by both Gram-positive and Gram-negative bacteria. Once secreted, lipoproteins are quickly acylated, anchoring them into the plasma membrane. Recent work has shown that Gram-positive bacteria are able to generate considerable diversity in the acylation of their lipoproteins, though the mechanisms involved are only just beginning to emerge. In Gram-negative organisms, most lipoproteins are subsequently trafficked to the outer membrane (OM). Lipoprotein trafficking is an essential pathway in these bacteria. At least one OM lipoprotein component is required by each of the essential machines that assemble the OM (such as the Bam and Lpt machines) and build the peptidoglycan cell wall (Lpo-penicillin-binding protein complexes). The Lol pathway has been the paradigm for OM lipoprotein trafficking: a complex of LolCDE extracts lipoproteins from the plasma membrane, LolA shuttles them through the periplasmic space, and LolB anchors them into the OM. The peptide signals responsible for OM-targeting via LolCDE have long been known for <i>Escherichia coli</i>. Remarkably, production of novel lipoprotein acyl forms in <i>E. coli</i> has reinforced the idea that lipid signals also contribute to OM targeting via LolCDE. Moreover, recent work has shown that lipoprotein trafficking can occur in <i>E. coli</i> without either LolA or LolB. Therefore, current evidence suggests that at least one additional, LolAB-independent route for OM lipoprotein trafficking exists. This chapter reviews the posttranslocation modifications of all lipoproteins, with a focus on the trafficking of lipoproteins to the OM of Gram-negative bacteria.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/ecosalplus.ESP-0038-2018","citationCount":"25","resultStr":"{\"title\":\"Lipoproteins and Their Trafficking to the Outer Membrane.\",\"authors\":\"Marcin Grabowicz\",\"doi\":\"10.1128/ecosalplus.ESP-0038-2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipoproteins are produced by both Gram-positive and Gram-negative bacteria. Once secreted, lipoproteins are quickly acylated, anchoring them into the plasma membrane. Recent work has shown that Gram-positive bacteria are able to generate considerable diversity in the acylation of their lipoproteins, though the mechanisms involved are only just beginning to emerge. In Gram-negative organisms, most lipoproteins are subsequently trafficked to the outer membrane (OM). Lipoprotein trafficking is an essential pathway in these bacteria. At least one OM lipoprotein component is required by each of the essential machines that assemble the OM (such as the Bam and Lpt machines) and build the peptidoglycan cell wall (Lpo-penicillin-binding protein complexes). The Lol pathway has been the paradigm for OM lipoprotein trafficking: a complex of LolCDE extracts lipoproteins from the plasma membrane, LolA shuttles them through the periplasmic space, and LolB anchors them into the OM. The peptide signals responsible for OM-targeting via LolCDE have long been known for <i>Escherichia coli</i>. Remarkably, production of novel lipoprotein acyl forms in <i>E. coli</i> has reinforced the idea that lipid signals also contribute to OM targeting via LolCDE. Moreover, recent work has shown that lipoprotein trafficking can occur in <i>E. coli</i> without either LolA or LolB. Therefore, current evidence suggests that at least one additional, LolAB-independent route for OM lipoprotein trafficking exists. This chapter reviews the posttranslocation modifications of all lipoproteins, with a focus on the trafficking of lipoproteins to the OM of Gram-negative bacteria.</p>\",\"PeriodicalId\":11500,\"journal\":{\"name\":\"EcoSal Plus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1128/ecosalplus.ESP-0038-2018\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoSal Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/ecosalplus.ESP-0038-2018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0038-2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 25

摘要

革兰氏阳性菌和革兰氏阴性菌都能产生脂蛋白。脂蛋白一旦分泌,就会迅速酰化,将它们固定在质膜上。最近的研究表明,革兰氏阳性细菌能够在其脂蛋白的酰化过程中产生相当大的多样性,尽管涉及的机制才刚刚开始出现。在革兰氏阴性菌中,大多数脂蛋白随后被转运到外膜(OM)。脂蛋白运输是这些细菌的重要途径。组装OM(如Bam和Lpt机器)和构建肽聚糖细胞壁(lpo -青霉素结合蛋白复合物)的每个基本机器都需要至少一种OM脂蛋白成分。Lol途径一直是OM脂蛋白运输的范例:LolCDE复合物从质膜中提取脂蛋白,LolA将它们穿梭于质周空间,而LolB将它们锚定在OM中。通过LolCDE负责om靶向的肽信号早已为大肠杆菌所知。值得注意的是,大肠杆菌中新型脂蛋白酰基形式的产生强化了脂质信号也有助于通过LolCDE靶向OM的观点。此外,最近的研究表明,在没有LolA或LolB的情况下,脂蛋白运输可以在大肠杆菌中发生。因此,目前的证据表明,至少存在一种额外的、不依赖于lolab的OM脂蛋白运输途径。本章回顾了所有脂蛋白的易位后修饰,重点介绍了脂蛋白在革兰氏阴性菌OM中的转运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipoproteins and Their Trafficking to the Outer Membrane.

Lipoproteins are produced by both Gram-positive and Gram-negative bacteria. Once secreted, lipoproteins are quickly acylated, anchoring them into the plasma membrane. Recent work has shown that Gram-positive bacteria are able to generate considerable diversity in the acylation of their lipoproteins, though the mechanisms involved are only just beginning to emerge. In Gram-negative organisms, most lipoproteins are subsequently trafficked to the outer membrane (OM). Lipoprotein trafficking is an essential pathway in these bacteria. At least one OM lipoprotein component is required by each of the essential machines that assemble the OM (such as the Bam and Lpt machines) and build the peptidoglycan cell wall (Lpo-penicillin-binding protein complexes). The Lol pathway has been the paradigm for OM lipoprotein trafficking: a complex of LolCDE extracts lipoproteins from the plasma membrane, LolA shuttles them through the periplasmic space, and LolB anchors them into the OM. The peptide signals responsible for OM-targeting via LolCDE have long been known for Escherichia coli. Remarkably, production of novel lipoprotein acyl forms in E. coli has reinforced the idea that lipid signals also contribute to OM targeting via LolCDE. Moreover, recent work has shown that lipoprotein trafficking can occur in E. coli without either LolA or LolB. Therefore, current evidence suggests that at least one additional, LolAB-independent route for OM lipoprotein trafficking exists. This chapter reviews the posttranslocation modifications of all lipoproteins, with a focus on the trafficking of lipoproteins to the OM of Gram-negative bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EcoSal Plus
EcoSal Plus Immunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍: EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.
期刊最新文献
Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. Transcription activation in Escherichia coli and Salmonella. Type IV pili of Enterobacteriaceae species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1