致病酵母菌对药物和应激的全基因组应答。

Pedro Pais, Mónica Galocha, Miguel Cacho Teixeira
{"title":"致病酵母菌对药物和应激的全基因组应答。","authors":"Pedro Pais,&nbsp;Mónica Galocha,&nbsp;Miguel Cacho Teixeira","doi":"10.1007/978-3-030-13035-0_7","DOIUrl":null,"url":null,"abstract":"<p><p>Candida glabrata is the second most common cause of candidemia worldwide and its prevalence has continuously increased over the last decades. C. glabrata infections are especially worrisome in immunocompromised patients, resulting in serious systemic infections, associated to high mortality rates. Intrinsic resistance to azole antifungals, widely used drugs in the clinical setting, and the ability to efficiently colonize the human host and medical devices, withstanding stress imposed by the immune system, are thought to underlie the emergence of C. glabrata. There is a clear clinical need to understand drug and stress resistance in C. glabrata. The increasing prevalence of multidrug resistant isolates needs to be addressed in order to overcome the decrease of viable therapeutic strategies and find new therapeutic targets. Likewise, the understanding of the mechanisms underlying its impressive ability thrive under oxidative, nitrosative, acidic and metabolic stresses, is crucial to design drugs that target these pathogenesis features. The study of the underlying mechanisms that translate C. glabrata plasticity and its competence to evade the immune system, as well as survive host stresses to establish infection, will benefit from extensive scrutiny. This chapter provides a review on the contribution of genome-wide studies to uncover clinically relevant drug resistance and stress response mechanisms in the human pathogenic yeast C. glabrata.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"58 ","pages":"155-193"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-13035-0_7","citationCount":"14","resultStr":"{\"title\":\"Genome-Wide Response to Drugs and Stress in the Pathogenic Yeast Candida glabrata.\",\"authors\":\"Pedro Pais,&nbsp;Mónica Galocha,&nbsp;Miguel Cacho Teixeira\",\"doi\":\"10.1007/978-3-030-13035-0_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Candida glabrata is the second most common cause of candidemia worldwide and its prevalence has continuously increased over the last decades. C. glabrata infections are especially worrisome in immunocompromised patients, resulting in serious systemic infections, associated to high mortality rates. Intrinsic resistance to azole antifungals, widely used drugs in the clinical setting, and the ability to efficiently colonize the human host and medical devices, withstanding stress imposed by the immune system, are thought to underlie the emergence of C. glabrata. There is a clear clinical need to understand drug and stress resistance in C. glabrata. The increasing prevalence of multidrug resistant isolates needs to be addressed in order to overcome the decrease of viable therapeutic strategies and find new therapeutic targets. Likewise, the understanding of the mechanisms underlying its impressive ability thrive under oxidative, nitrosative, acidic and metabolic stresses, is crucial to design drugs that target these pathogenesis features. The study of the underlying mechanisms that translate C. glabrata plasticity and its competence to evade the immune system, as well as survive host stresses to establish infection, will benefit from extensive scrutiny. This chapter provides a review on the contribution of genome-wide studies to uncover clinically relevant drug resistance and stress response mechanisms in the human pathogenic yeast C. glabrata.</p>\",\"PeriodicalId\":20880,\"journal\":{\"name\":\"Progress in molecular and subcellular biology\",\"volume\":\"58 \",\"pages\":\"155-193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-030-13035-0_7\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular and subcellular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-13035-0_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-13035-0_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 14

摘要

光滑念珠菌是世界范围内念珠菌病的第二大常见原因,其患病率在过去几十年中不断增加。在免疫功能低下的患者中,光棘球蚴感染尤其令人担忧,导致严重的全身感染,并伴有高死亡率。对唑类抗真菌药物的内在抗性,临床环境中广泛使用的药物,以及有效定植人类宿主和医疗设备的能力,承受免疫系统施加的压力,被认为是C. glabrata出现的基础。有明确的临床需要了解药物和应激抵抗的光棘草。为了克服可行的治疗策略减少和寻找新的治疗靶点,需要解决多重耐药分离株日益流行的问题。同样,了解其在氧化、亚硝化、酸性和代谢应激下令人印象深刻的能力的机制,对于设计针对这些发病机制特征的药物至关重要。广泛的研究将有助于研究光棘草可塑性的潜在机制及其逃避免疫系统的能力,以及在宿主胁迫下建立感染的能力。本章综述了全基因组研究在揭示人类致病性酵母C. glabrata临床相关耐药和应激反应机制方面的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-Wide Response to Drugs and Stress in the Pathogenic Yeast Candida glabrata.

Candida glabrata is the second most common cause of candidemia worldwide and its prevalence has continuously increased over the last decades. C. glabrata infections are especially worrisome in immunocompromised patients, resulting in serious systemic infections, associated to high mortality rates. Intrinsic resistance to azole antifungals, widely used drugs in the clinical setting, and the ability to efficiently colonize the human host and medical devices, withstanding stress imposed by the immune system, are thought to underlie the emergence of C. glabrata. There is a clear clinical need to understand drug and stress resistance in C. glabrata. The increasing prevalence of multidrug resistant isolates needs to be addressed in order to overcome the decrease of viable therapeutic strategies and find new therapeutic targets. Likewise, the understanding of the mechanisms underlying its impressive ability thrive under oxidative, nitrosative, acidic and metabolic stresses, is crucial to design drugs that target these pathogenesis features. The study of the underlying mechanisms that translate C. glabrata plasticity and its competence to evade the immune system, as well as survive host stresses to establish infection, will benefit from extensive scrutiny. This chapter provides a review on the contribution of genome-wide studies to uncover clinically relevant drug resistance and stress response mechanisms in the human pathogenic yeast C. glabrata.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
7
期刊介绍: Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.
期刊最新文献
Inorganic Polyphosphate and F0F1-ATP Synthase of Mammalian Mitochondria. Inorganic Polyphosphate in Mitochondrial Energy Metabolism and Pathology. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1