在基因-身体活动相互作用分析中从极端暴露中选择个体的前景。

IF 1.1 4区 生物学 Q4 GENETICS & HEREDITY Human Heredity Pub Date : 2018-01-01 Epub Date: 2019-06-05 DOI:10.1159/000499711
Oyomoare L Osazuwa-Peters, Karen Schwander, R J Waken, Lisa de Las Fuentes, Tuomas O Kilpeläinen, Ruth J F Loos, Susan B Racette, Yun Ju Sung, D C Rao
{"title":"在基因-身体活动相互作用分析中从极端暴露中选择个体的前景。","authors":"Oyomoare L Osazuwa-Peters,&nbsp;Karen Schwander,&nbsp;R J Waken,&nbsp;Lisa de Las Fuentes,&nbsp;Tuomas O Kilpeläinen,&nbsp;Ruth J F Loos,&nbsp;Susan B Racette,&nbsp;Yun Ju Sung,&nbsp;D C Rao","doi":"10.1159/000499711","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci.</p><p><strong>Objectives: </strong>This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification.</p><p><strong>Method: </strong>For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error.</p><p><strong>Results: </strong>In the empirical analysis, SIEE's performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power.</p><p><strong>Conclusion: </strong>SIEE's promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE's full advantage.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000499711","citationCount":"1","resultStr":"{\"title\":\"The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions.\",\"authors\":\"Oyomoare L Osazuwa-Peters,&nbsp;Karen Schwander,&nbsp;R J Waken,&nbsp;Lisa de Las Fuentes,&nbsp;Tuomas O Kilpeläinen,&nbsp;Ruth J F Loos,&nbsp;Susan B Racette,&nbsp;Yun Ju Sung,&nbsp;D C Rao\",\"doi\":\"10.1159/000499711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci.</p><p><strong>Objectives: </strong>This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification.</p><p><strong>Method: </strong>For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error.</p><p><strong>Results: </strong>In the empirical analysis, SIEE's performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power.</p><p><strong>Conclusion: </strong>SIEE's promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE's full advantage.</p>\",\"PeriodicalId\":13226,\"journal\":{\"name\":\"Human Heredity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000499711\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000499711\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000499711","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

摘要

背景:使用较低四分位数作为截止点的二分类通常用于协调跨研究的异质性体力活动(PA)测量。然而,这可能会造成错误分类,阻碍新基因座的发现。目的:本研究旨在评估从极端暴露(SIEE)中选择个体的性能,作为减少此类错误分类的替代方法。方法:对于Framingham心脏研究中的收缩压和舒张压,我们使用SIEE和其他两种二分类方法得出的三个PA变量进行了基因-PA相互作用分析的全基因组关联研究。我们比较了使用定量PA变量检测到的位点数量和重叠位点。此外,我们进行了模拟研究,以评估暴露组中协同/拮抗遗传效应和存在/不存在测量误差时的偏倚、错误发现率(FDR)和功率。结果:在实证分析中,SIEE的绩效既不是最好的也不是最差的。在大多数模拟场景中,SIEE在FDR和功率方面的表现始终优于SIEE。特别是,在以拮抗效应和测量误差为特征的场景中,SIEE的偏置最小,功率最高。结论:SIEE的前景似乎仅限于检测具有拮抗作用的基因座。需要进一步的研究来评估SIEE的全部优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions.

Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci.

Objectives: This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification.

Method: For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error.

Results: In the empirical analysis, SIEE's performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power.

Conclusion: SIEE's promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE's full advantage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Heredity
Human Heredity 生物-遗传学
CiteScore
2.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.
期刊最新文献
Place of concordance-discordance model in evaluating NGS performance. Implications of the Co-Dominance Model for Hardy-Weinberg Testing in Genetic Association Studies. Joint Linkage and Association Analysis Using GENEHUNTER-MODSCORE with an Application to Familial Pancreatic Cancer. Investigation of Recessive Effects of Coding Variants on Common Clinical Phenotypes in Exome-Sequenced UK Biobank Participants. comorbidPGS: An R Package Assessing Shared Predisposition between Phenotypes Using Polygenic Scores.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1