Sevag Kaladchibachi , David C. Negelspach , Fabian Fernandez
{"title":"光的昼夜相移:超越光子","authors":"Sevag Kaladchibachi , David C. Negelspach , Fabian Fernandez","doi":"10.1016/j.nbscr.2018.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Circadian entrainment to the solar light:dark schedule is thought to be maintained by a simple photon counting method. According to this hypothesis, the pacemaker adjusts the phase of the body’s endogenous rhythms in accordance to the intensity and duration with which it encounters a perceived twilight signal. While previous data have generally supported the hypothesis, more recent analysis has codified other factors besides irradiance that influence the magnitude of resetting responses to light delivered within the same phase of the circadian cycle. In particular, the frequency with which light is alternated with darkness, or whether it’s packaged in millisecond flashes versus continuous blocks, can significantly alter the dose-response relationship. Here, we used a drosophilid model to test whether circadian photon-counting trends can be broken with light administration protocols spanning just 15 minutes. In the early part of the delay zone, a 15-min continuous light pulse was fragmented until it could no longer produce a full-magnitude shift of the flies’ locomotor activity rhythms. The remaining exposure was then reorganized along various fractionation schemes that employed pulses with different widths and interstimulus intervals. Our results suggest that the pacemaker integrates the phase-shifting effects of equiluminous light differently depending on the stimulus pattern with which light is made available. For example, despite having fewer photons, certain ratios of light and darkness could be optimized on a timescale of seconds and minutes so as to achieve pacemaker resetting close to par with steady luminance. These data provide further evidence that the circadian pacemaker’s responses to light entail more than photon counting and motivate continued discussion on how phototherapy can be best optimized in clinical practice to improve conditions linked to circadian impairment.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"5 ","pages":"Pages 8-14"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2018.03.003","citationCount":"12","resultStr":"{\"title\":\"Circadian phase-shifting by light: Beyond photons\",\"authors\":\"Sevag Kaladchibachi , David C. Negelspach , Fabian Fernandez\",\"doi\":\"10.1016/j.nbscr.2018.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Circadian entrainment to the solar light:dark schedule is thought to be maintained by a simple photon counting method. According to this hypothesis, the pacemaker adjusts the phase of the body’s endogenous rhythms in accordance to the intensity and duration with which it encounters a perceived twilight signal. While previous data have generally supported the hypothesis, more recent analysis has codified other factors besides irradiance that influence the magnitude of resetting responses to light delivered within the same phase of the circadian cycle. In particular, the frequency with which light is alternated with darkness, or whether it’s packaged in millisecond flashes versus continuous blocks, can significantly alter the dose-response relationship. Here, we used a drosophilid model to test whether circadian photon-counting trends can be broken with light administration protocols spanning just 15 minutes. In the early part of the delay zone, a 15-min continuous light pulse was fragmented until it could no longer produce a full-magnitude shift of the flies’ locomotor activity rhythms. The remaining exposure was then reorganized along various fractionation schemes that employed pulses with different widths and interstimulus intervals. Our results suggest that the pacemaker integrates the phase-shifting effects of equiluminous light differently depending on the stimulus pattern with which light is made available. For example, despite having fewer photons, certain ratios of light and darkness could be optimized on a timescale of seconds and minutes so as to achieve pacemaker resetting close to par with steady luminance. These data provide further evidence that the circadian pacemaker’s responses to light entail more than photon counting and motivate continued discussion on how phototherapy can be best optimized in clinical practice to improve conditions linked to circadian impairment.</p></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"5 \",\"pages\":\"Pages 8-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nbscr.2018.03.003\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994417300366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994417300366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Circadian entrainment to the solar light:dark schedule is thought to be maintained by a simple photon counting method. According to this hypothesis, the pacemaker adjusts the phase of the body’s endogenous rhythms in accordance to the intensity and duration with which it encounters a perceived twilight signal. While previous data have generally supported the hypothesis, more recent analysis has codified other factors besides irradiance that influence the magnitude of resetting responses to light delivered within the same phase of the circadian cycle. In particular, the frequency with which light is alternated with darkness, or whether it’s packaged in millisecond flashes versus continuous blocks, can significantly alter the dose-response relationship. Here, we used a drosophilid model to test whether circadian photon-counting trends can be broken with light administration protocols spanning just 15 minutes. In the early part of the delay zone, a 15-min continuous light pulse was fragmented until it could no longer produce a full-magnitude shift of the flies’ locomotor activity rhythms. The remaining exposure was then reorganized along various fractionation schemes that employed pulses with different widths and interstimulus intervals. Our results suggest that the pacemaker integrates the phase-shifting effects of equiluminous light differently depending on the stimulus pattern with which light is made available. For example, despite having fewer photons, certain ratios of light and darkness could be optimized on a timescale of seconds and minutes so as to achieve pacemaker resetting close to par with steady luminance. These data provide further evidence that the circadian pacemaker’s responses to light entail more than photon counting and motivate continued discussion on how phototherapy can be best optimized in clinical practice to improve conditions linked to circadian impairment.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.