Belinda J Vause, Simon A Morley, Vera G Fonseca, Anna Jażdżewska, Gail V Ashton, David K A Barnes, Hendrik Giebner, Melody S Clark, Lloyd S Peck
{"title":"南极浅层软底栖生物群落时空动态:气候变化下的生态驱动因素","authors":"Belinda J Vause, Simon A Morley, Vera G Fonseca, Anna Jażdżewska, Gail V Ashton, David K A Barnes, Hendrik Giebner, Melody S Clark, Lloyd S Peck","doi":"10.1186/s12898-019-0244-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Marine soft sediments are some of the most widespread habitats in the ocean, playing a vital role in global carbon cycling, but are amongst the least studied with regard to species composition and ecosystem functioning. This is particularly true of the Polar Regions, which are currently undergoing rapid climate change, the impacts of which are poorly understood. Compared to other latitudes, Polar sediment habitats also experience additional environmental drivers of strong seasonality and intense disturbance from iceberg scouring, which are major structural forces for hard substratum communities. This study compared sediment assemblages from two coves, near Rothera Point, Antarctic Peninsula, 67°S in order to understand the principal drivers of community structure, for the first time, evaluating composition across all size classes from mega- to micro-fauna.</p><p><strong>Results: </strong>Morpho-taxonomy identified 77 macrofaunal species with densities of 464-16,084 individuals m<sup>-2</sup>. eDNA metabarcoding of microfauna, in summer only, identified a higher diversity, 189 metazoan amplicon sequence variants (ASVs) using the 18S ribosomal RNA and 249 metazoan ASVs using the mitochondrial COI gene. Both techniques recorded a greater taxonomic diversity in South Cove than Hangar Cove, with differences in communities between the coves, although the main taxonomic drivers varied between techniques. Morphotaxonomy identified the main differences between coves as the mollusc, Altenaeum charcoti, the cnidarian Edwardsia sp. and the polychaetes from the family cirratulidae. Metabarcoding identified greater numbers of species of nematodes, crustaceans and Platyhelminthes in South Cove, but more bivalve species in Hangar Cove. There were no detectable differences in community composition, measured through morphotaxonomy, between seasons, years or due to iceberg disturbance.</p><p><strong>Conclusions: </strong>This study found that unlike hard substratum communities the diversity of Antarctic soft sediment communities is correlated with the same factors as other latitudes. Diversity was significantly correlated with grain size and organic content, not iceberg scour. The increase in glacial sediment input as glaciers melt, may therefore be more important than increased iceberg disturbance.</p>","PeriodicalId":9232,"journal":{"name":"BMC Ecology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12898-019-0244-x","citationCount":"23","resultStr":"{\"title\":\"Spatial and temporal dynamics of Antarctic shallow soft-bottom benthic communities: ecological drivers under climate change.\",\"authors\":\"Belinda J Vause, Simon A Morley, Vera G Fonseca, Anna Jażdżewska, Gail V Ashton, David K A Barnes, Hendrik Giebner, Melody S Clark, Lloyd S Peck\",\"doi\":\"10.1186/s12898-019-0244-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Marine soft sediments are some of the most widespread habitats in the ocean, playing a vital role in global carbon cycling, but are amongst the least studied with regard to species composition and ecosystem functioning. This is particularly true of the Polar Regions, which are currently undergoing rapid climate change, the impacts of which are poorly understood. Compared to other latitudes, Polar sediment habitats also experience additional environmental drivers of strong seasonality and intense disturbance from iceberg scouring, which are major structural forces for hard substratum communities. This study compared sediment assemblages from two coves, near Rothera Point, Antarctic Peninsula, 67°S in order to understand the principal drivers of community structure, for the first time, evaluating composition across all size classes from mega- to micro-fauna.</p><p><strong>Results: </strong>Morpho-taxonomy identified 77 macrofaunal species with densities of 464-16,084 individuals m<sup>-2</sup>. eDNA metabarcoding of microfauna, in summer only, identified a higher diversity, 189 metazoan amplicon sequence variants (ASVs) using the 18S ribosomal RNA and 249 metazoan ASVs using the mitochondrial COI gene. Both techniques recorded a greater taxonomic diversity in South Cove than Hangar Cove, with differences in communities between the coves, although the main taxonomic drivers varied between techniques. Morphotaxonomy identified the main differences between coves as the mollusc, Altenaeum charcoti, the cnidarian Edwardsia sp. and the polychaetes from the family cirratulidae. Metabarcoding identified greater numbers of species of nematodes, crustaceans and Platyhelminthes in South Cove, but more bivalve species in Hangar Cove. There were no detectable differences in community composition, measured through morphotaxonomy, between seasons, years or due to iceberg disturbance.</p><p><strong>Conclusions: </strong>This study found that unlike hard substratum communities the diversity of Antarctic soft sediment communities is correlated with the same factors as other latitudes. Diversity was significantly correlated with grain size and organic content, not iceberg scour. The increase in glacial sediment input as glaciers melt, may therefore be more important than increased iceberg disturbance.</p>\",\"PeriodicalId\":9232,\"journal\":{\"name\":\"BMC Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12898-019-0244-x\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12898-019-0244-x\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12898-019-0244-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Spatial and temporal dynamics of Antarctic shallow soft-bottom benthic communities: ecological drivers under climate change.
Background: Marine soft sediments are some of the most widespread habitats in the ocean, playing a vital role in global carbon cycling, but are amongst the least studied with regard to species composition and ecosystem functioning. This is particularly true of the Polar Regions, which are currently undergoing rapid climate change, the impacts of which are poorly understood. Compared to other latitudes, Polar sediment habitats also experience additional environmental drivers of strong seasonality and intense disturbance from iceberg scouring, which are major structural forces for hard substratum communities. This study compared sediment assemblages from two coves, near Rothera Point, Antarctic Peninsula, 67°S in order to understand the principal drivers of community structure, for the first time, evaluating composition across all size classes from mega- to micro-fauna.
Results: Morpho-taxonomy identified 77 macrofaunal species with densities of 464-16,084 individuals m-2. eDNA metabarcoding of microfauna, in summer only, identified a higher diversity, 189 metazoan amplicon sequence variants (ASVs) using the 18S ribosomal RNA and 249 metazoan ASVs using the mitochondrial COI gene. Both techniques recorded a greater taxonomic diversity in South Cove than Hangar Cove, with differences in communities between the coves, although the main taxonomic drivers varied between techniques. Morphotaxonomy identified the main differences between coves as the mollusc, Altenaeum charcoti, the cnidarian Edwardsia sp. and the polychaetes from the family cirratulidae. Metabarcoding identified greater numbers of species of nematodes, crustaceans and Platyhelminthes in South Cove, but more bivalve species in Hangar Cove. There were no detectable differences in community composition, measured through morphotaxonomy, between seasons, years or due to iceberg disturbance.
Conclusions: This study found that unlike hard substratum communities the diversity of Antarctic soft sediment communities is correlated with the same factors as other latitudes. Diversity was significantly correlated with grain size and organic content, not iceberg scour. The increase in glacial sediment input as glaciers melt, may therefore be more important than increased iceberg disturbance.
期刊介绍:
BMC Ecology is an open access, peer-reviewed journal that considers articles on environmental, behavioral and population ecology as well as biodiversity of plants, animals and microbes.