snp -环境相互作用与异质性的meta分析。

IF 1.1 4区 生物学 Q4 GENETICS & HEREDITY Human Heredity Pub Date : 2019-01-01 Epub Date: 2019-12-19 DOI:10.1159/000504170
Qinqin Jin, Gang Shi
{"title":"snp -环境相互作用与异质性的meta分析。","authors":"Qinqin Jin,&nbsp;Gang Shi","doi":"10.1159/000504170","DOIUrl":null,"url":null,"abstract":"<p><p>Meta-analyses are widely used in genome-wide association studies to combine the results obtained from multiple studies. Classical random-effects methods treat genetic heterogeneity as a random effect and consider it as a portion of the variance associated with a fixed effect of the variant. Recent work suggests performing hypothesis testing with the null hypothesis under which neither fixed nor random effects exist for a variant. This method has been shown to perform better than classical random-effects methods. In this work, we propose a meta-analysis of testing single nucleotide polymorphism (SNP)-environment interaction in the presence of genetic heterogeneity. We introduced the random effects of the SNP and SNP-environment interaction under test into a meta-regression model to account for heterogeneity. A test for the SNP-environment interaction was formulated to test for fixed and random effects of the interaction simultaneously. Similarly, a test for total genetic effects was formulated to test for fixed effects of the SNP and the SNP-environment interaction together with their random effects. We performed simulations to study the null distribution and statistical power of the proposed tests. We show that the new methods have higher power than classical random-effects and fixed-effects meta-regression methods when heterogeneity effects are large.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":"84 3","pages":"117-126"},"PeriodicalIF":1.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000504170","citationCount":"3","resultStr":"{\"title\":\"Meta-Analysis of SNP-Environment Interaction with Heterogeneity.\",\"authors\":\"Qinqin Jin,&nbsp;Gang Shi\",\"doi\":\"10.1159/000504170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Meta-analyses are widely used in genome-wide association studies to combine the results obtained from multiple studies. Classical random-effects methods treat genetic heterogeneity as a random effect and consider it as a portion of the variance associated with a fixed effect of the variant. Recent work suggests performing hypothesis testing with the null hypothesis under which neither fixed nor random effects exist for a variant. This method has been shown to perform better than classical random-effects methods. In this work, we propose a meta-analysis of testing single nucleotide polymorphism (SNP)-environment interaction in the presence of genetic heterogeneity. We introduced the random effects of the SNP and SNP-environment interaction under test into a meta-regression model to account for heterogeneity. A test for the SNP-environment interaction was formulated to test for fixed and random effects of the interaction simultaneously. Similarly, a test for total genetic effects was formulated to test for fixed effects of the SNP and the SNP-environment interaction together with their random effects. We performed simulations to study the null distribution and statistical power of the proposed tests. We show that the new methods have higher power than classical random-effects and fixed-effects meta-regression methods when heterogeneity effects are large.</p>\",\"PeriodicalId\":13226,\"journal\":{\"name\":\"Human Heredity\",\"volume\":\"84 3\",\"pages\":\"117-126\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000504170\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000504170\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000504170","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 3

摘要

荟萃分析在全基因组关联研究中被广泛应用,用于综合多个研究的结果。经典的随机效应方法将遗传异质性视为一种随机效应,并将其视为与变异的固定效应相关的方差的一部分。最近的工作建议用零假设进行假设检验,在零假设下,一个变量既不存在固定效应,也不存在随机效应。该方法已被证明比经典的随机效应方法性能更好。在这项工作中,我们提出了在遗传异质性存在的情况下测试单核苷酸多态性(SNP)-环境相互作用的荟萃分析。我们将SNP和SNP-环境相互作用的随机效应引入元回归模型,以解释异质性。制定了snp -环境相互作用的测试,以同时测试相互作用的固定效应和随机效应。同样,制定了总遗传效应测试,以测试SNP的固定效应和SNP-环境相互作用及其随机效应。我们进行了模拟,以研究所提出的检验的零分布和统计能力。我们发现,当异质性效应较大时,新方法比经典的随机效应和固定效应元回归方法具有更高的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meta-Analysis of SNP-Environment Interaction with Heterogeneity.

Meta-analyses are widely used in genome-wide association studies to combine the results obtained from multiple studies. Classical random-effects methods treat genetic heterogeneity as a random effect and consider it as a portion of the variance associated with a fixed effect of the variant. Recent work suggests performing hypothesis testing with the null hypothesis under which neither fixed nor random effects exist for a variant. This method has been shown to perform better than classical random-effects methods. In this work, we propose a meta-analysis of testing single nucleotide polymorphism (SNP)-environment interaction in the presence of genetic heterogeneity. We introduced the random effects of the SNP and SNP-environment interaction under test into a meta-regression model to account for heterogeneity. A test for the SNP-environment interaction was formulated to test for fixed and random effects of the interaction simultaneously. Similarly, a test for total genetic effects was formulated to test for fixed effects of the SNP and the SNP-environment interaction together with their random effects. We performed simulations to study the null distribution and statistical power of the proposed tests. We show that the new methods have higher power than classical random-effects and fixed-effects meta-regression methods when heterogeneity effects are large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Heredity
Human Heredity 生物-遗传学
CiteScore
2.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.
期刊最新文献
Screening for mitochondrial tRNA variants in 200 patients with systemic lupus erythematosus. Place of concordance-discordance model in evaluating NGS performance. Implications of the Co-Dominance Model for Hardy-Weinberg Testing in Genetic Association Studies. Joint Linkage and Association Analysis Using GENEHUNTER-MODSCORE with an Application to Familial Pancreatic Cancer. Investigation of Recessive Effects of Coding Variants on Common Clinical Phenotypes in Exome-Sequenced UK Biobank Participants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1