哈氏磷虾(Phoronopsis harmeri)发育过程中的分子模式揭示了其与钩吻腕足类的相似性。

IF 4.1 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Evodevo Pub Date : 2019-12-12 eCollection Date: 2019-01-01 DOI:10.1186/s13227-019-0146-1
Carmen Andrikou, Yale J Passamaneck, Chris J Lowe, Mark Q Martindale, Andreas Hejnol
{"title":"哈氏磷虾(Phoronopsis harmeri)发育过程中的分子模式揭示了其与钩吻腕足类的相似性。","authors":"Carmen Andrikou,&nbsp;Yale J Passamaneck,&nbsp;Chris J Lowe,&nbsp;Mark Q Martindale,&nbsp;Andreas Hejnol","doi":"10.1186/s13227-019-0146-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (<i>otx</i>, <i>gsc</i>, <i>six3/6</i>, <i>nk2.1</i>), posterior (<i>cdx, bra</i>) and endomesodermal (<i>foxA</i>, <i>gata4/5/6</i>, <i>twist</i>) markers during the development of the protostomic phoronid <i>Phoronopsis harmeri.</i></p><p><strong>Results: </strong>The transcription factors <i>foxA, gata4/5/6</i> and <i>cdx</i> show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with <i>foxA</i> expressed in the presumptive foregut, <i>gata4/5/6</i> demarcating the midgut and <i>cdx</i> confined to the hindgut. Furthermore, <i>six3/6,</i> usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, <i>brachyury</i>, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids.</p><p><strong>Conclusions: </strong>Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid <i>Ph. harmeri</i> also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0146-1","citationCount":"15","resultStr":"{\"title\":\"Molecular patterning during the development of <i>Phoronopsis harmeri</i> reveals similarities to rhynchonelliform brachiopods.\",\"authors\":\"Carmen Andrikou,&nbsp;Yale J Passamaneck,&nbsp;Chris J Lowe,&nbsp;Mark Q Martindale,&nbsp;Andreas Hejnol\",\"doi\":\"10.1186/s13227-019-0146-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (<i>otx</i>, <i>gsc</i>, <i>six3/6</i>, <i>nk2.1</i>), posterior (<i>cdx, bra</i>) and endomesodermal (<i>foxA</i>, <i>gata4/5/6</i>, <i>twist</i>) markers during the development of the protostomic phoronid <i>Phoronopsis harmeri.</i></p><p><strong>Results: </strong>The transcription factors <i>foxA, gata4/5/6</i> and <i>cdx</i> show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with <i>foxA</i> expressed in the presumptive foregut, <i>gata4/5/6</i> demarcating the midgut and <i>cdx</i> confined to the hindgut. Furthermore, <i>six3/6,</i> usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, <i>brachyury</i>, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids.</p><p><strong>Conclusions: </strong>Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid <i>Ph. harmeri</i> also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.</p>\",\"PeriodicalId\":49076,\"journal\":{\"name\":\"Evodevo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2019-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13227-019-0146-1\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evodevo\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13227-019-0146-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-019-0146-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 15

摘要

背景:Phoronids、rhynchenelliform和linguliform腕足类在胚胎命运图上表现出惊人的相似性,特别是在它们的轴规格和区域化方面。然而,尽管已经对腕足类动物的发育进行了详细研究,并证明胚胎模式是原肠胚形成模式(原肠造口术与后肠造口术)的一个原因,但甲拌磷类动物的分子描述仍然缺失。为了了解磷虾是否表现出与腕足类相似的潜在胚胎分子机制,我们报道了在原口磷虾发育过程中前部(otx,gsc,six3/6,nk2.1)、后部(cdx,bra)和内胚层(foxA,gata4/5/6,twist)标记物的表达模式。结果:转录因子foxA、gata4/5/6和cdx在甲拌磷胚胎肠的发育和区域化过程中表现出保守表达,其中foxA在假定前肠表达,gata4/5/6-划分中肠,cdx仅限于后肠。此外,six3/6,通常是一种非常保守的前部标记物,显示出显著的动态表达,不仅区分了顶端器官和口腔外胚层,还区分了发育中的中肠和前部中胚层的细胞簇,类似于腕足类、苔藓虫和一些后口胆汁类的报道。令人惊讶的是,brachyury,一种通常与原肠胚形成运动、口腔和后肠发育有关的转录因子,似乎与甲虫的这些模式化事件无关。结论:我们对基因表达模式的描述和与其他研究的Bilateria的比较表明,甲鱼的轴决定时间和细胞命运分布与钩吻腕足类的相似性最高,这可能与它们共同的原口发育模式有关。尽管有这些相似之处,哈氏甲鱼在发育过程中也表现出了特殊性,这表明负责胚层形成和轴规范的基因调控网络的排列存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular patterning during the development of Phoronopsis harmeri reveals similarities to rhynchonelliform brachiopods.

Background: Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (otx, gsc, six3/6, nk2.1), posterior (cdx, bra) and endomesodermal (foxA, gata4/5/6, twist) markers during the development of the protostomic phoronid Phoronopsis harmeri.

Results: The transcription factors foxA, gata4/5/6 and cdx show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with foxA expressed in the presumptive foregut, gata4/5/6 demarcating the midgut and cdx confined to the hindgut. Furthermore, six3/6, usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, brachyury, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids.

Conclusions: Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid Ph. harmeri also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evodevo
Evodevo EVOLUTIONARY BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo. The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution. All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology
期刊最新文献
Early embryonic development of the German cockroach Blattella germanica. Periderm fate and independence of tooth formation are conserved across osteichthyans. Comparative Hox genes expression within the dimorphic annelid Streblospio benedicti reveals patterning variation during development. Single-cell sequencing suggests a conserved function of Hedgehog-signalling in spider eye development. Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1