{"title":"CA2:一个高度连接的海马内中继。","authors":"Steven J Middleton, Thomas J McHugh","doi":"10.1146/annurev-neuro-080719-100343","DOIUrl":null,"url":null,"abstract":"<p><p>Although Lorente de No' recognized the anatomical distinction of the hippocampal Cornu Ammonis (CA) 2 region, it had, until recently, been assigned no unique function. Its location between the key players of the circuit, CA3 and CA1, which along with the entorhinal cortex and dentate gyrus compose the classic trisynaptic circuit, further distracted research interest. However, the connectivity of CA2 pyramidal cells, together with unique patterns of gene expression, hints at a much larger contribution to hippocampal information processing than has been ascribed. Here we review recent advances that have identified new roles for CA2 in hippocampal centric processing, together with specialized functions in social memory and, potentially, as a broadcaster of novelty. These new data, together with CA2's role in disease, justify a closer look at how this small region exerts its influence and how it might best be exploited to understand and treat disease-related circuit dysfunctions.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"43 ","pages":"55-72"},"PeriodicalIF":12.1000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-neuro-080719-100343","citationCount":"35","resultStr":"{\"title\":\"CA2: A Highly Connected Intrahippocampal Relay.\",\"authors\":\"Steven J Middleton, Thomas J McHugh\",\"doi\":\"10.1146/annurev-neuro-080719-100343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although Lorente de No' recognized the anatomical distinction of the hippocampal Cornu Ammonis (CA) 2 region, it had, until recently, been assigned no unique function. Its location between the key players of the circuit, CA3 and CA1, which along with the entorhinal cortex and dentate gyrus compose the classic trisynaptic circuit, further distracted research interest. However, the connectivity of CA2 pyramidal cells, together with unique patterns of gene expression, hints at a much larger contribution to hippocampal information processing than has been ascribed. Here we review recent advances that have identified new roles for CA2 in hippocampal centric processing, together with specialized functions in social memory and, potentially, as a broadcaster of novelty. These new data, together with CA2's role in disease, justify a closer look at how this small region exerts its influence and how it might best be exploited to understand and treat disease-related circuit dysfunctions.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\"43 \",\"pages\":\"55-72\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-neuro-080719-100343\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-080719-100343\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-080719-100343","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 35
摘要
虽然Lorente de No'认识到海马coru amoniis (CA) 2区域的解剖学区别,但直到最近,它还没有被赋予独特的功能。它位于电路的关键参与者CA3和CA1之间,CA3和CA1与内嗅皮层和齿状回一起组成了经典的三突触电路,这进一步分散了研究兴趣。然而,CA2锥体细胞的连接性,以及独特的基因表达模式,暗示了海马信息处理的贡献比所认为的要大得多。在这里,我们回顾了最近的进展,已经确定了CA2在海马体中心加工中的新作用,以及在社会记忆中的专门功能,并可能作为新奇的广播者。这些新数据,加上CA2在疾病中的作用,证明了更仔细地研究这个小区域如何发挥其影响,以及如何最好地利用它来理解和治疗与疾病相关的电路功能障碍。
Although Lorente de No' recognized the anatomical distinction of the hippocampal Cornu Ammonis (CA) 2 region, it had, until recently, been assigned no unique function. Its location between the key players of the circuit, CA3 and CA1, which along with the entorhinal cortex and dentate gyrus compose the classic trisynaptic circuit, further distracted research interest. However, the connectivity of CA2 pyramidal cells, together with unique patterns of gene expression, hints at a much larger contribution to hippocampal information processing than has been ascribed. Here we review recent advances that have identified new roles for CA2 in hippocampal centric processing, together with specialized functions in social memory and, potentially, as a broadcaster of novelty. These new data, together with CA2's role in disease, justify a closer look at how this small region exerts its influence and how it might best be exploited to understand and treat disease-related circuit dysfunctions.
期刊介绍:
The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience.
The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.