氨解酶:使用多种方法催化同一类型反应的酶。

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2019-12-01 Epub Date: 2020-01-06 DOI:10.1080/10409238.2019.1708261
Ronald E Viola
{"title":"氨解酶:使用多种方法催化同一类型反应的酶。","authors":"Ronald E Viola","doi":"10.1080/10409238.2019.1708261","DOIUrl":null,"url":null,"abstract":"Abstract The paradigm that protein structure determines protein function has been clearly established. What is less clear is whether a specific protein structure is always required to carry out a specific function. Numerous cases are now known where there is no apparent connection between the biological function of a protein and the other members of its structural class, and where functionally related proteins can have quite diverse structures. A set of enzymes with these diverse properties, the ammonia-lyases, will be examined in this review. These are a class of enzymes that catalyze a relatively straightforward deamination reaction. However, the individual enzymes of this class possess a wide variety of different structures, utilize a diverse set of cofactors, and appear to catalyze this related reaction through a range of different mechanisms. This review aims to address a basic question: if there is not a specific protein structure and active site architecture that is both required and sufficient to define a catalyst for a given chemical reaction, then what factor(s) determine the structure and the mechanism that is selected to catalyze a particular reaction?","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"54 6","pages":"467-483"},"PeriodicalIF":6.2000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2019.1708261","citationCount":"1","resultStr":"{\"title\":\"The ammonia-lyases: enzymes that use a wide range of approaches to catalyze the same type of reaction.\",\"authors\":\"Ronald E Viola\",\"doi\":\"10.1080/10409238.2019.1708261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paradigm that protein structure determines protein function has been clearly established. What is less clear is whether a specific protein structure is always required to carry out a specific function. Numerous cases are now known where there is no apparent connection between the biological function of a protein and the other members of its structural class, and where functionally related proteins can have quite diverse structures. A set of enzymes with these diverse properties, the ammonia-lyases, will be examined in this review. These are a class of enzymes that catalyze a relatively straightforward deamination reaction. However, the individual enzymes of this class possess a wide variety of different structures, utilize a diverse set of cofactors, and appear to catalyze this related reaction through a range of different mechanisms. This review aims to address a basic question: if there is not a specific protein structure and active site architecture that is both required and sufficient to define a catalyst for a given chemical reaction, then what factor(s) determine the structure and the mechanism that is selected to catalyze a particular reaction?\",\"PeriodicalId\":10794,\"journal\":{\"name\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"volume\":\"54 6\",\"pages\":\"467-483\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10409238.2019.1708261\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10409238.2019.1708261\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2019.1708261","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

蛋白质结构决定蛋白质功能的范式已被明确确立。不太清楚的是,特定的蛋白质结构是否总是需要执行特定的功能。目前已知的许多情况下,一种蛋白质的生物学功能与其结构类的其他成员之间没有明显的联系,而功能相关的蛋白质可能具有相当不同的结构。本文将对具有这些不同性质的氨解酶进行综述。这是一类催化相对直接的脱氨反应的酶。然而,这类酶具有多种不同的结构,利用多种不同的辅因子,并似乎通过一系列不同的机制催化这一相关反应。这篇综述的目的是解决一个基本问题:如果没有特定的蛋白质结构和活性位点结构,既需要又足以定义一个特定化学反应的催化剂,那么哪些因素决定了被选择来催化特定反应的结构和机制?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The ammonia-lyases: enzymes that use a wide range of approaches to catalyze the same type of reaction.
Abstract The paradigm that protein structure determines protein function has been clearly established. What is less clear is whether a specific protein structure is always required to carry out a specific function. Numerous cases are now known where there is no apparent connection between the biological function of a protein and the other members of its structural class, and where functionally related proteins can have quite diverse structures. A set of enzymes with these diverse properties, the ammonia-lyases, will be examined in this review. These are a class of enzymes that catalyze a relatively straightforward deamination reaction. However, the individual enzymes of this class possess a wide variety of different structures, utilize a diverse set of cofactors, and appear to catalyze this related reaction through a range of different mechanisms. This review aims to address a basic question: if there is not a specific protein structure and active site architecture that is both required and sufficient to define a catalyst for a given chemical reaction, then what factor(s) determine the structure and the mechanism that is selected to catalyze a particular reaction?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.90
自引率
0.00%
发文量
6
期刊介绍: As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties. Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology. Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.
期刊最新文献
The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters. Methanogens and what they tell us about how life might survive on Mars. Exercise training and changes in skeletal muscle mitochondrial proteins: from blots to "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1