{"title":"氨解酶:使用多种方法催化同一类型反应的酶。","authors":"Ronald E Viola","doi":"10.1080/10409238.2019.1708261","DOIUrl":null,"url":null,"abstract":"Abstract The paradigm that protein structure determines protein function has been clearly established. What is less clear is whether a specific protein structure is always required to carry out a specific function. Numerous cases are now known where there is no apparent connection between the biological function of a protein and the other members of its structural class, and where functionally related proteins can have quite diverse structures. A set of enzymes with these diverse properties, the ammonia-lyases, will be examined in this review. These are a class of enzymes that catalyze a relatively straightforward deamination reaction. However, the individual enzymes of this class possess a wide variety of different structures, utilize a diverse set of cofactors, and appear to catalyze this related reaction through a range of different mechanisms. This review aims to address a basic question: if there is not a specific protein structure and active site architecture that is both required and sufficient to define a catalyst for a given chemical reaction, then what factor(s) determine the structure and the mechanism that is selected to catalyze a particular reaction?","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"54 6","pages":"467-483"},"PeriodicalIF":6.2000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2019.1708261","citationCount":"1","resultStr":"{\"title\":\"The ammonia-lyases: enzymes that use a wide range of approaches to catalyze the same type of reaction.\",\"authors\":\"Ronald E Viola\",\"doi\":\"10.1080/10409238.2019.1708261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paradigm that protein structure determines protein function has been clearly established. What is less clear is whether a specific protein structure is always required to carry out a specific function. Numerous cases are now known where there is no apparent connection between the biological function of a protein and the other members of its structural class, and where functionally related proteins can have quite diverse structures. A set of enzymes with these diverse properties, the ammonia-lyases, will be examined in this review. These are a class of enzymes that catalyze a relatively straightforward deamination reaction. However, the individual enzymes of this class possess a wide variety of different structures, utilize a diverse set of cofactors, and appear to catalyze this related reaction through a range of different mechanisms. This review aims to address a basic question: if there is not a specific protein structure and active site architecture that is both required and sufficient to define a catalyst for a given chemical reaction, then what factor(s) determine the structure and the mechanism that is selected to catalyze a particular reaction?\",\"PeriodicalId\":10794,\"journal\":{\"name\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"volume\":\"54 6\",\"pages\":\"467-483\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10409238.2019.1708261\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10409238.2019.1708261\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2019.1708261","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The ammonia-lyases: enzymes that use a wide range of approaches to catalyze the same type of reaction.
Abstract The paradigm that protein structure determines protein function has been clearly established. What is less clear is whether a specific protein structure is always required to carry out a specific function. Numerous cases are now known where there is no apparent connection between the biological function of a protein and the other members of its structural class, and where functionally related proteins can have quite diverse structures. A set of enzymes with these diverse properties, the ammonia-lyases, will be examined in this review. These are a class of enzymes that catalyze a relatively straightforward deamination reaction. However, the individual enzymes of this class possess a wide variety of different structures, utilize a diverse set of cofactors, and appear to catalyze this related reaction through a range of different mechanisms. This review aims to address a basic question: if there is not a specific protein structure and active site architecture that is both required and sufficient to define a catalyst for a given chemical reaction, then what factor(s) determine the structure and the mechanism that is selected to catalyze a particular reaction?
期刊介绍:
As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties.
Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology.
Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.