Paul G Thomas, Maria Shubina, Siddharth Balachandran
{"title":"甲型流感病毒免疫和发病过程中依赖 ZBP1/DAI 的细胞死亡途径","authors":"Paul G Thomas, Maria Shubina, Siddharth Balachandran","doi":"10.1007/82_2019_190","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza A viruses (IAV) are members of the Orthomyxoviridae family of negative-sense RNA viruses. The greatest diversity of IAV strains is found in aquatic birds, but a subset of strains infects other avian as well as mammalian species, including humans. In aquatic birds, infection is largely restricted to the gastrointestinal tract and spread is through feces, while in humans and other mammals, respiratory epithelial cells are the primary sites supporting productive replication and transmission. IAV triggers the death of most cell types in which it replicates, both in culture and in vivo. When well controlled, such cell death is considered an effective host defense mechanism that eliminates infected cells and limits virus spread. Unchecked or inopportune cell death also results in immunopathology. In this chapter, we discuss the impact of cell death in restricting virus spread, supporting the adaptive immune response and driving pathogenesis in the mammalian respiratory tract. Recent studies have begun to shed light on the signaling pathways underlying IAV-activated cell death. These pathways, initiated by the pathogen sensor protein ZBP1 (also called DAI and DLM1), cause infected cells to undergo apoptosis, necroptosis, and pyroptosis. We outline mechanisms of ZBP1-mediated cell death signaling following IAV infection.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/82_2019_190","citationCount":"11","resultStr":"{\"title\":\"ZBP1/DAI-Dependent Cell Death Pathways in Influenza A Virus Immunity and Pathogenesis.\",\"authors\":\"Paul G Thomas, Maria Shubina, Siddharth Balachandran\",\"doi\":\"10.1007/82_2019_190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Influenza A viruses (IAV) are members of the Orthomyxoviridae family of negative-sense RNA viruses. The greatest diversity of IAV strains is found in aquatic birds, but a subset of strains infects other avian as well as mammalian species, including humans. In aquatic birds, infection is largely restricted to the gastrointestinal tract and spread is through feces, while in humans and other mammals, respiratory epithelial cells are the primary sites supporting productive replication and transmission. IAV triggers the death of most cell types in which it replicates, both in culture and in vivo. When well controlled, such cell death is considered an effective host defense mechanism that eliminates infected cells and limits virus spread. Unchecked or inopportune cell death also results in immunopathology. In this chapter, we discuss the impact of cell death in restricting virus spread, supporting the adaptive immune response and driving pathogenesis in the mammalian respiratory tract. Recent studies have begun to shed light on the signaling pathways underlying IAV-activated cell death. These pathways, initiated by the pathogen sensor protein ZBP1 (also called DAI and DLM1), cause infected cells to undergo apoptosis, necroptosis, and pyroptosis. We outline mechanisms of ZBP1-mediated cell death signaling following IAV infection.</p>\",\"PeriodicalId\":11102,\"journal\":{\"name\":\"Current topics in microbiology and immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/82_2019_190\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in microbiology and immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/82_2019_190\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/82_2019_190","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
ZBP1/DAI-Dependent Cell Death Pathways in Influenza A Virus Immunity and Pathogenesis.
Influenza A viruses (IAV) are members of the Orthomyxoviridae family of negative-sense RNA viruses. The greatest diversity of IAV strains is found in aquatic birds, but a subset of strains infects other avian as well as mammalian species, including humans. In aquatic birds, infection is largely restricted to the gastrointestinal tract and spread is through feces, while in humans and other mammals, respiratory epithelial cells are the primary sites supporting productive replication and transmission. IAV triggers the death of most cell types in which it replicates, both in culture and in vivo. When well controlled, such cell death is considered an effective host defense mechanism that eliminates infected cells and limits virus spread. Unchecked or inopportune cell death also results in immunopathology. In this chapter, we discuss the impact of cell death in restricting virus spread, supporting the adaptive immune response and driving pathogenesis in the mammalian respiratory tract. Recent studies have begun to shed light on the signaling pathways underlying IAV-activated cell death. These pathways, initiated by the pathogen sensor protein ZBP1 (also called DAI and DLM1), cause infected cells to undergo apoptosis, necroptosis, and pyroptosis. We outline mechanisms of ZBP1-mediated cell death signaling following IAV infection.
期刊介绍:
The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.