聚苯乙烯-聚块氧化聚乙烯薄膜:体外细胞相容性和蛋白质吸附试验。

IF 2.1 4区 医学 Q2 Physics and Astronomy Biointerphases Pub Date : 2020-01-31 DOI:10.1116/1.5135062
Isabela Monteiro A, Tarek Kollmetz, David S Musson, Sue R McGlashan, Jenny Malmström
{"title":"聚苯乙烯-聚块氧化聚乙烯薄膜:体外细胞相容性和蛋白质吸附试验。","authors":"Isabela Monteiro A,&nbsp;Tarek Kollmetz,&nbsp;David S Musson,&nbsp;Sue R McGlashan,&nbsp;Jenny Malmström","doi":"10.1116/1.5135062","DOIUrl":null,"url":null,"abstract":"<p><p>Polystyrene-block-polyethylene oxide (PS-b-PEO) coated surfaces have been explored as cell culture substrates in the past decade. However, their cytocompatibility has not been extensively assessed. In this study, the in vitro cytocompatibility of PS-b-PEO was investigated. Cellular morphology, metabolic activity, and viability were evaluated at 1, 3, and 5 days after cell seeding. Viability was greater than 90% throughout the 5 days culture, with abundant cell spreading evident by the formation of prominent F-actin stress fibres. The cytocompatibility study was complemented by the analysis of adsorption of a range of extracellular matrix proteins on PS-b-PEO thin films by quartz crystal microbalance with dissipation. Protein adsorption tests revealed that there was no significant difference in protein adhesion between surfaces with a PEO domain coverage of ≈28%, compared to the homogeneous polystyrene control. The findings demonstrate that PS-b-PEO thin films are cytocompatible and are a favourable surface coating for cell culture studies.</p>","PeriodicalId":49232,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1116/1.5135062","citationCount":"3","resultStr":"{\"title\":\"Polystyrene-block-polyethylene oxide thin films: In vitro cytocompatibility and protein adsorption testing.\",\"authors\":\"Isabela Monteiro A,&nbsp;Tarek Kollmetz,&nbsp;David S Musson,&nbsp;Sue R McGlashan,&nbsp;Jenny Malmström\",\"doi\":\"10.1116/1.5135062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polystyrene-block-polyethylene oxide (PS-b-PEO) coated surfaces have been explored as cell culture substrates in the past decade. However, their cytocompatibility has not been extensively assessed. In this study, the in vitro cytocompatibility of PS-b-PEO was investigated. Cellular morphology, metabolic activity, and viability were evaluated at 1, 3, and 5 days after cell seeding. Viability was greater than 90% throughout the 5 days culture, with abundant cell spreading evident by the formation of prominent F-actin stress fibres. The cytocompatibility study was complemented by the analysis of adsorption of a range of extracellular matrix proteins on PS-b-PEO thin films by quartz crystal microbalance with dissipation. Protein adsorption tests revealed that there was no significant difference in protein adhesion between surfaces with a PEO domain coverage of ≈28%, compared to the homogeneous polystyrene control. The findings demonstrate that PS-b-PEO thin films are cytocompatible and are a favourable surface coating for cell culture studies.</p>\",\"PeriodicalId\":49232,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1116/1.5135062\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/1.5135062\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/1.5135062","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3

摘要

在过去的十年中,聚苯乙烯块聚氧化物(PS-b-PEO)涂层表面被探索作为细胞培养底物。然而,它们的细胞相容性尚未得到广泛的评估。本研究考察了PS-b-PEO的体外细胞相容性。分别在细胞播种后1、3、5天评估细胞形态、代谢活性和活力。在5天的培养过程中,存活率大于90%,细胞扩散丰富,形成显著的f -肌动蛋白应激纤维。利用石英晶体微天平对PS-b-PEO薄膜上一系列细胞外基质蛋白的吸附进行了分析,以补充细胞相容性研究。蛋白质吸附测试表明,与均匀聚苯乙烯对照相比,PEO结构域覆盖率为≈28%的表面之间的蛋白质粘附没有显著差异。研究结果表明,PS-b-PEO薄膜具有细胞相容性,是细胞培养研究的良好表面涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polystyrene-block-polyethylene oxide thin films: In vitro cytocompatibility and protein adsorption testing.

Polystyrene-block-polyethylene oxide (PS-b-PEO) coated surfaces have been explored as cell culture substrates in the past decade. However, their cytocompatibility has not been extensively assessed. In this study, the in vitro cytocompatibility of PS-b-PEO was investigated. Cellular morphology, metabolic activity, and viability were evaluated at 1, 3, and 5 days after cell seeding. Viability was greater than 90% throughout the 5 days culture, with abundant cell spreading evident by the formation of prominent F-actin stress fibres. The cytocompatibility study was complemented by the analysis of adsorption of a range of extracellular matrix proteins on PS-b-PEO thin films by quartz crystal microbalance with dissipation. Protein adsorption tests revealed that there was no significant difference in protein adhesion between surfaces with a PEO domain coverage of ≈28%, compared to the homogeneous polystyrene control. The findings demonstrate that PS-b-PEO thin films are cytocompatible and are a favourable surface coating for cell culture studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases BIOPHYSICS-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
4.10
自引率
0.00%
发文量
35
审稿时长
>12 weeks
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
期刊最新文献
Interleukin 1β and lipopolysaccharides induction dictate chondrocyte morphological properties and reduce cellular roughness and adhesion energy comparatively. Tutorial on the instrumentation of sum frequency generation vibrational spectroscopy: Using a Ti:sapphire based system as an example. Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn. Time-of-flight secondary ion mass spectrometry analysis of hair samples using unsupervised artificial neural network. Ar-gas cluster ion beam in ToF-SIMS for peptide and protein analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1