医疗保健用三种铜表面的体外抗菌效果和耐久性评价。

IF 2.1 4区 医学 Q2 Physics and Astronomy Biointerphases Pub Date : 2020-02-10 DOI:10.1116/1.5134676
Elizabeth A Bryce, Billie Velapatino, Hamed Akbari Khorami, Tysha Donnelly-Pierce, Titus Wong, Richard Dixon, Edouard Asselin
{"title":"医疗保健用三种铜表面的体外抗菌效果和耐久性评价。","authors":"Elizabeth A Bryce,&nbsp;Billie Velapatino,&nbsp;Hamed Akbari Khorami,&nbsp;Tysha Donnelly-Pierce,&nbsp;Titus Wong,&nbsp;Richard Dixon,&nbsp;Edouard Asselin","doi":"10.1116/1.5134676","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial properties of solid copper (Cu) surfaces against various microorganisms have been demonstrated, but little is known about the durability and relative antimicrobial efficacy of different Cu formulations currently used in healthcare. The aim of this study was to assess whether three different formulations of copper-bearing alloys (integral, spray-on and Cu-impregnated surfaces) and a stainless steel control differed in their antimicrobial efficacy, durability, and compatibility with hospital-grade cleaner/disinfectants. The U.S. Environmental Protection Agency draft protocol for the evaluation of bactericidal activity of Cu containing alloys was modified to more accurately reflect cleaning methods in healthcare. The three different Cu alloys were evaluated using 25 × 25 × 3 mm disks subjected to one year of simulated cleaning and disinfection using the Wiperator™ with microfiber cloths presoaked in three common hospital disinfectants: accelerated hydrogen peroxide, quaternary ammonium, or sodium hypochlorite solutions. Bactericidal activity was evaluated using Staphylococcus aureus and Pseudomonas aeruginosa. While all Cu formulations exhibited some antimicrobial activity, integral and spray-on Cu alloys showed the greatest efficacy. Assessments of durability included documentation of changes in mass, morphological changes by scanning electron microscopy, chemical composition alteration by energy-dispersive x-ray spectroscopy, and surface roughness alteration using profilometry over one year of simulated use. The integral Cu alloy had the least mass loss (0.20% and 0.19%) and abrasion-corrosion rate (6.28 and 6.09 μm/yr) compared to stainless steel. The integral product also showed the highest durability. Exposure to disinfectants affected both the antimicrobial efficacy and durability of the various copper products.</p>","PeriodicalId":49232,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1116/1.5134676","citationCount":"12","resultStr":"{\"title\":\"In vitro evaluation of antimicrobial efficacy and durability of three copper surfaces used in healthcare.\",\"authors\":\"Elizabeth A Bryce,&nbsp;Billie Velapatino,&nbsp;Hamed Akbari Khorami,&nbsp;Tysha Donnelly-Pierce,&nbsp;Titus Wong,&nbsp;Richard Dixon,&nbsp;Edouard Asselin\",\"doi\":\"10.1116/1.5134676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial properties of solid copper (Cu) surfaces against various microorganisms have been demonstrated, but little is known about the durability and relative antimicrobial efficacy of different Cu formulations currently used in healthcare. The aim of this study was to assess whether three different formulations of copper-bearing alloys (integral, spray-on and Cu-impregnated surfaces) and a stainless steel control differed in their antimicrobial efficacy, durability, and compatibility with hospital-grade cleaner/disinfectants. The U.S. Environmental Protection Agency draft protocol for the evaluation of bactericidal activity of Cu containing alloys was modified to more accurately reflect cleaning methods in healthcare. The three different Cu alloys were evaluated using 25 × 25 × 3 mm disks subjected to one year of simulated cleaning and disinfection using the Wiperator™ with microfiber cloths presoaked in three common hospital disinfectants: accelerated hydrogen peroxide, quaternary ammonium, or sodium hypochlorite solutions. Bactericidal activity was evaluated using Staphylococcus aureus and Pseudomonas aeruginosa. While all Cu formulations exhibited some antimicrobial activity, integral and spray-on Cu alloys showed the greatest efficacy. Assessments of durability included documentation of changes in mass, morphological changes by scanning electron microscopy, chemical composition alteration by energy-dispersive x-ray spectroscopy, and surface roughness alteration using profilometry over one year of simulated use. The integral Cu alloy had the least mass loss (0.20% and 0.19%) and abrasion-corrosion rate (6.28 and 6.09 μm/yr) compared to stainless steel. The integral product also showed the highest durability. Exposure to disinfectants affected both the antimicrobial efficacy and durability of the various copper products.</p>\",\"PeriodicalId\":49232,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1116/1.5134676\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/1.5134676\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/1.5134676","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 12

摘要

固体铜(Cu)表面对各种微生物的抗菌性能已经得到证明,但目前在医疗保健中使用的不同铜制剂的耐久性和相对抗菌功效知之甚少。本研究的目的是评估三种不同配方的含铜合金(整体表面、喷涂表面和铜浸渍表面)和不锈钢对照是否在抗菌效果、耐久性以及与医院级清洁剂/消毒剂的相容性方面存在差异。美国环境保护署(epa)对含铜合金杀菌活性评价草案进行了修改,以更准确地反映医疗保健中的清洁方法。使用25 × 25 × 3 mm的圆盘对三种不同的铜合金进行了为期一年的模拟清洁和消毒,使用Wiperator™用超纤维布预先浸泡在三种常见的医院消毒剂中:加速过氧化氢、季铵或次氯酸钠溶液。用金黄色葡萄球菌和铜绿假单胞菌评价其杀菌活性。所有Cu合金均表现出一定的抑菌活性,其中整体型和喷雾型Cu合金抑菌效果最好。耐久性评估包括对质量变化的记录,扫描电子显微镜下的形态变化,能量色散x射线光谱法的化学成分变化,以及模拟使用一年以上的轮廓测量法的表面粗糙度变化。与不锈钢相比,整体Cu合金的质量损失(0.20%和0.19%)和磨损腐蚀速率(6.28和6.09 μm/yr)最小。整体产品也显示出最高的耐用性。接触消毒剂会影响各种铜制品的抗菌效果和耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vitro evaluation of antimicrobial efficacy and durability of three copper surfaces used in healthcare.

Antimicrobial properties of solid copper (Cu) surfaces against various microorganisms have been demonstrated, but little is known about the durability and relative antimicrobial efficacy of different Cu formulations currently used in healthcare. The aim of this study was to assess whether three different formulations of copper-bearing alloys (integral, spray-on and Cu-impregnated surfaces) and a stainless steel control differed in their antimicrobial efficacy, durability, and compatibility with hospital-grade cleaner/disinfectants. The U.S. Environmental Protection Agency draft protocol for the evaluation of bactericidal activity of Cu containing alloys was modified to more accurately reflect cleaning methods in healthcare. The three different Cu alloys were evaluated using 25 × 25 × 3 mm disks subjected to one year of simulated cleaning and disinfection using the Wiperator™ with microfiber cloths presoaked in three common hospital disinfectants: accelerated hydrogen peroxide, quaternary ammonium, or sodium hypochlorite solutions. Bactericidal activity was evaluated using Staphylococcus aureus and Pseudomonas aeruginosa. While all Cu formulations exhibited some antimicrobial activity, integral and spray-on Cu alloys showed the greatest efficacy. Assessments of durability included documentation of changes in mass, morphological changes by scanning electron microscopy, chemical composition alteration by energy-dispersive x-ray spectroscopy, and surface roughness alteration using profilometry over one year of simulated use. The integral Cu alloy had the least mass loss (0.20% and 0.19%) and abrasion-corrosion rate (6.28 and 6.09 μm/yr) compared to stainless steel. The integral product also showed the highest durability. Exposure to disinfectants affected both the antimicrobial efficacy and durability of the various copper products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases BIOPHYSICS-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
4.10
自引率
0.00%
发文量
35
审稿时长
>12 weeks
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
期刊最新文献
Interleukin 1β and lipopolysaccharides induction dictate chondrocyte morphological properties and reduce cellular roughness and adhesion energy comparatively. Tutorial on the instrumentation of sum frequency generation vibrational spectroscopy: Using a Ti:sapphire based system as an example. Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn. Time-of-flight secondary ion mass spectrometry analysis of hair samples using unsupervised artificial neural network. Ar-gas cluster ion beam in ToF-SIMS for peptide and protein analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1