年轻人和老年人骨骼肌中镁转运和稳态相关基因表达:PROOF队列研究的转录组学数据分析

IF 1.5 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Magnesium research Pub Date : 2019-08-01 DOI:10.1684/mrh.2019.0458
Cécile Coudy-Gandilhon, Marine Gueugneau, Daniel Taillandier, Lydie Combaret, Cécile Polge, Frédéric Roche, Jean-Claude Barthélémy, Léonard Féasson, Jeanette A Maier, André Mazur, Daniel Béchet
{"title":"年轻人和老年人骨骼肌中镁转运和稳态相关基因表达:PROOF队列研究的转录组学数据分析","authors":"Cécile Coudy-Gandilhon,&nbsp;Marine Gueugneau,&nbsp;Daniel Taillandier,&nbsp;Lydie Combaret,&nbsp;Cécile Polge,&nbsp;Frédéric Roche,&nbsp;Jean-Claude Barthélémy,&nbsp;Léonard Féasson,&nbsp;Jeanette A Maier,&nbsp;André Mazur,&nbsp;Daniel Béchet","doi":"10.1684/mrh.2019.0458","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium (Mg<sup>2+</sup>) is critical for a number of biological processes and 25% body Mg<sup>2+</sup> is located in the skeletal muscle. Mg<sup>2+</sup> transport and homeostasis systems (MgTHs) regulate intracellular Mg<sup>2+</sup> concentration and muscle MgTHs are thus related to whole body Mg<sup>2+</sup> homeostasis. Nonetheless, few studies have investigated the regulation of muscle MgTHs under (patho)physiological conditions. Herein, we assessed the relationship between the expression of MgTHs genes (Trpm6, Trpm7, Magt1, Mrs2, Cnnm1-4, Slc41a1-3) and relevant pathways in human sarcopenia, which is one of the most dramatic physiologic changes affecting the human body. Transcriptomic data were compared between young adult (YO, 22 y, n = 11) and old (EL, 73 y, n = 13) men from the PROOF cohort. MgTH mRNA levels did not change with aging, with the exception of a slight decrease for Slc41a3. Nevertheless, interindividual variations of mRNA levels revealed strong correlations between MgTHs in the YO group, while few were maintained in the EL muscle. Moreover, in the YO muscle, different clusters of MgTH mRNAs strongly correlated with divers physiological (BMI, blood pressure) and muscle characteristics (intramyocellular droplets, capillarization); however, most correlations changed or disappeared in the EL muscle. Further investigations of the whole transcriptome identified several sets of mRNAs correlated with defined MgTHs. There again was a sharp difference between YO and EL muscles, as the number of mRNAs correlated with MgTHs strongly decreased with aging. Gene ontology analyses of these sets of correlated mRNAs revealed 6 biological processes common to YO and EL, 3 specific to the YO (RNA processing, translation, respiration), and 2 (regulation of catabolic process, Wnt signaling) to the EL muscle. Overall, these observations lead to questions about potential resilience to muscle Mg<sup>2+</sup> homeostasis in the elderly.</p>","PeriodicalId":18159,"journal":{"name":"Magnesium research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Magnesium transport and homeostasis-related gene expression in skeletal muscle of young and old adults: analysis of the transcriptomic data from the PROOF cohort Study.\",\"authors\":\"Cécile Coudy-Gandilhon,&nbsp;Marine Gueugneau,&nbsp;Daniel Taillandier,&nbsp;Lydie Combaret,&nbsp;Cécile Polge,&nbsp;Frédéric Roche,&nbsp;Jean-Claude Barthélémy,&nbsp;Léonard Féasson,&nbsp;Jeanette A Maier,&nbsp;André Mazur,&nbsp;Daniel Béchet\",\"doi\":\"10.1684/mrh.2019.0458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnesium (Mg<sup>2+</sup>) is critical for a number of biological processes and 25% body Mg<sup>2+</sup> is located in the skeletal muscle. Mg<sup>2+</sup> transport and homeostasis systems (MgTHs) regulate intracellular Mg<sup>2+</sup> concentration and muscle MgTHs are thus related to whole body Mg<sup>2+</sup> homeostasis. Nonetheless, few studies have investigated the regulation of muscle MgTHs under (patho)physiological conditions. Herein, we assessed the relationship between the expression of MgTHs genes (Trpm6, Trpm7, Magt1, Mrs2, Cnnm1-4, Slc41a1-3) and relevant pathways in human sarcopenia, which is one of the most dramatic physiologic changes affecting the human body. Transcriptomic data were compared between young adult (YO, 22 y, n = 11) and old (EL, 73 y, n = 13) men from the PROOF cohort. MgTH mRNA levels did not change with aging, with the exception of a slight decrease for Slc41a3. Nevertheless, interindividual variations of mRNA levels revealed strong correlations between MgTHs in the YO group, while few were maintained in the EL muscle. Moreover, in the YO muscle, different clusters of MgTH mRNAs strongly correlated with divers physiological (BMI, blood pressure) and muscle characteristics (intramyocellular droplets, capillarization); however, most correlations changed or disappeared in the EL muscle. Further investigations of the whole transcriptome identified several sets of mRNAs correlated with defined MgTHs. There again was a sharp difference between YO and EL muscles, as the number of mRNAs correlated with MgTHs strongly decreased with aging. Gene ontology analyses of these sets of correlated mRNAs revealed 6 biological processes common to YO and EL, 3 specific to the YO (RNA processing, translation, respiration), and 2 (regulation of catabolic process, Wnt signaling) to the EL muscle. Overall, these observations lead to questions about potential resilience to muscle Mg<sup>2+</sup> homeostasis in the elderly.</p>\",\"PeriodicalId\":18159,\"journal\":{\"name\":\"Magnesium research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnesium research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/mrh.2019.0458\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnesium research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/mrh.2019.0458","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

镁(Mg2+)对许多生物过程至关重要,25%的身体Mg2+位于骨骼肌中。Mg2+转运和稳态系统(MgTHs)调节细胞内Mg2+浓度,因此肌肉MgTHs与全身Mg2+稳态有关。然而,很少有研究调查(病理)生理条件下肌肉mgth的调节。在此,我们评估了MgTHs基因(Trpm6、Trpm7、Magt1、Mrs2、Cnnm1-4、Slc41a1-3)在影响人体最剧烈的生理变化之一——肌少症中的表达与相关通路的关系。比较来自PROOF队列的年轻男性(YO, 22岁,n = 11)和老年男性(EL, 73岁,n = 13)的转录组学数据。除Slc41a3略有下降外,MgTH mRNA水平不随年龄变化。然而,mRNA水平的个体间差异显示,在YO组中,mgth之间存在很强的相关性,而在EL肌中则很少保持相关性。此外,在YO肌中,不同簇状的MgTH mrna与多种生理(BMI、血压)和肌肉特征(细胞内液滴、毛细血管化)密切相关;然而,大多数相关性在EL肌中改变或消失。对整个转录组的进一步研究发现了几组与定义的mgth相关的mrna。YO和EL肌肉之间再次出现了明显的差异,因为与mgth相关的mrna数量随着年龄的增长而急剧减少。对这些相关mrna的基因本体论分析揭示了6个YO和EL共有的生物过程,3个YO特有的生物过程(RNA加工、翻译、呼吸),2个(分解代谢过程的调节、Wnt信号传导)与EL肌肉有关。总的来说,这些观察结果导致了老年人对肌肉Mg2+稳态的潜在恢复能力的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnesium transport and homeostasis-related gene expression in skeletal muscle of young and old adults: analysis of the transcriptomic data from the PROOF cohort Study.

Magnesium (Mg2+) is critical for a number of biological processes and 25% body Mg2+ is located in the skeletal muscle. Mg2+ transport and homeostasis systems (MgTHs) regulate intracellular Mg2+ concentration and muscle MgTHs are thus related to whole body Mg2+ homeostasis. Nonetheless, few studies have investigated the regulation of muscle MgTHs under (patho)physiological conditions. Herein, we assessed the relationship between the expression of MgTHs genes (Trpm6, Trpm7, Magt1, Mrs2, Cnnm1-4, Slc41a1-3) and relevant pathways in human sarcopenia, which is one of the most dramatic physiologic changes affecting the human body. Transcriptomic data were compared between young adult (YO, 22 y, n = 11) and old (EL, 73 y, n = 13) men from the PROOF cohort. MgTH mRNA levels did not change with aging, with the exception of a slight decrease for Slc41a3. Nevertheless, interindividual variations of mRNA levels revealed strong correlations between MgTHs in the YO group, while few were maintained in the EL muscle. Moreover, in the YO muscle, different clusters of MgTH mRNAs strongly correlated with divers physiological (BMI, blood pressure) and muscle characteristics (intramyocellular droplets, capillarization); however, most correlations changed or disappeared in the EL muscle. Further investigations of the whole transcriptome identified several sets of mRNAs correlated with defined MgTHs. There again was a sharp difference between YO and EL muscles, as the number of mRNAs correlated with MgTHs strongly decreased with aging. Gene ontology analyses of these sets of correlated mRNAs revealed 6 biological processes common to YO and EL, 3 specific to the YO (RNA processing, translation, respiration), and 2 (regulation of catabolic process, Wnt signaling) to the EL muscle. Overall, these observations lead to questions about potential resilience to muscle Mg2+ homeostasis in the elderly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnesium research
Magnesium research 医学-内分泌学与代谢
CiteScore
3.50
自引率
9.40%
发文量
6
审稿时长
>12 weeks
期刊介绍: Magnesium Research, the official journal of the international Society for the Development of Research on Magnesium (SDRM), has been the benchmark journal on the use of magnesium in biomedicine for more than 30 years. This quarterly publication provides regular updates on multinational and multidisciplinary research into magnesium, bringing together original experimental and clinical articles, correspondence, Letters to the Editor, comments on latest news, general features, summaries of relevant articles from other journals, and reports and statements from national and international conferences and symposiums. Indexed in the leading medical databases, Magnesium Research is an essential journal for specialists and general practitioners, for basic and clinical researchers, for practising doctors and academics.
期刊最新文献
Association between dietary magnesium intake and all-cause mortality among patients with diabetic retinopathy: a retrospective cohort study of the NHANES 1999-2018. Association between dietary magnesium intake and liver fibrosis among type 2 diabetes mellitus patients: a cross-sectional study from the NHANES database. Association between short-term changes in serum magnesium and in-hospital mortality following acute myocardial infarction: a cohort study based on the MIMIC database. Effect of magnesium oxide or citrate supplements on metabolic risk factors in kidney stone formers with idiopathic hyperoxaluria: a randomized clinical trial. The central role of magnesium in skeletal muscle: from myogenesis to performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1