表面清洁和样品载体的互补高分辨率成像技术。

IF 2.1 4区 医学 Q2 Physics and Astronomy Biointerphases Pub Date : 2020-03-25 DOI:10.1116/1.5143203
Pietro Benettoni, Jia-Yu Ye, Timothy R Holbrook, Federica Calabrese, Stephan Wagner, Mashaalah Zarejousheghani, Jan Griebel, Maria K Ullrich, Niculina Musat, Matthias Schmidt, Roman Flyunt, Thorsten Reemtsma, Hans-Hermann Richnow, Hryhoriy Stryhanyuk
{"title":"表面清洁和样品载体的互补高分辨率成像技术。","authors":"Pietro Benettoni,&nbsp;Jia-Yu Ye,&nbsp;Timothy R Holbrook,&nbsp;Federica Calabrese,&nbsp;Stephan Wagner,&nbsp;Mashaalah Zarejousheghani,&nbsp;Jan Griebel,&nbsp;Maria K Ullrich,&nbsp;Niculina Musat,&nbsp;Matthias Schmidt,&nbsp;Roman Flyunt,&nbsp;Thorsten Reemtsma,&nbsp;Hans-Hermann Richnow,&nbsp;Hryhoriy Stryhanyuk","doi":"10.1116/1.5143203","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, high-resolution imaging techniques are extensively applied in a complementary way to gain insights into complex phenomena. For a truly complementary analytical approach, a common sample carrier is required that is suitable for the different preparation methods necessary for each analytical technique. This sample carrier should be capable of accommodating diverse analytes and maintaining their pristine composition and arrangement during deposition and preparation. In this work, a new type of sample carrier consisting of a silicon wafer with a hydrophilic polymer coating was developed. The robustness of the polymer coating toward solvents was strengthened by cross-linking and stoving. Furthermore, a new method of UV-ozone cleaning was developed that enhances the adhesion of the polymer coating to the wafer and ensures reproducible surface-properties of the resulting sample carrier. The hydrophilicity of the sample carrier was recovered applying the new method of UV-ozone cleaning, while avoiding UV-induced damages to the polymer. Noncontact 3D optical profilometry and contact angle measurements were used to monitor the hydrophilicity of the coating. The hydrophilicity of the polymer coating ensures its spongelike behavior so that upon the deposition of an analyte suspension, the solvent and solutes are separated from the analyte by absorption into the polymer. This feature is essential to limit the coffee-ring effect and preserve the native identity of an analyte upon deposition. The suitability of the sample carrier for various sample types was tested using nanoparticles from suspension, bacterial cells, and tissue sections. To assess the homogeneity of the analyte distribution and preservation of sample integrity, optical and scanning electron microscopy, helium ion microscopy, laser ablation inductively coupled plasma mass spectrometry, and time-of-flight secondary ion mass spectrometry were used. This demonstrates the broad applicability of the newly developed sample carrier and its value for complementary imaging.</p>","PeriodicalId":49232,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1116/1.5143203","citationCount":"0","resultStr":"{\"title\":\"Surface cleaning and sample carrier for complementary high-resolution imaging techniques.\",\"authors\":\"Pietro Benettoni,&nbsp;Jia-Yu Ye,&nbsp;Timothy R Holbrook,&nbsp;Federica Calabrese,&nbsp;Stephan Wagner,&nbsp;Mashaalah Zarejousheghani,&nbsp;Jan Griebel,&nbsp;Maria K Ullrich,&nbsp;Niculina Musat,&nbsp;Matthias Schmidt,&nbsp;Roman Flyunt,&nbsp;Thorsten Reemtsma,&nbsp;Hans-Hermann Richnow,&nbsp;Hryhoriy Stryhanyuk\",\"doi\":\"10.1116/1.5143203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nowadays, high-resolution imaging techniques are extensively applied in a complementary way to gain insights into complex phenomena. For a truly complementary analytical approach, a common sample carrier is required that is suitable for the different preparation methods necessary for each analytical technique. This sample carrier should be capable of accommodating diverse analytes and maintaining their pristine composition and arrangement during deposition and preparation. In this work, a new type of sample carrier consisting of a silicon wafer with a hydrophilic polymer coating was developed. The robustness of the polymer coating toward solvents was strengthened by cross-linking and stoving. Furthermore, a new method of UV-ozone cleaning was developed that enhances the adhesion of the polymer coating to the wafer and ensures reproducible surface-properties of the resulting sample carrier. The hydrophilicity of the sample carrier was recovered applying the new method of UV-ozone cleaning, while avoiding UV-induced damages to the polymer. Noncontact 3D optical profilometry and contact angle measurements were used to monitor the hydrophilicity of the coating. The hydrophilicity of the polymer coating ensures its spongelike behavior so that upon the deposition of an analyte suspension, the solvent and solutes are separated from the analyte by absorption into the polymer. This feature is essential to limit the coffee-ring effect and preserve the native identity of an analyte upon deposition. The suitability of the sample carrier for various sample types was tested using nanoparticles from suspension, bacterial cells, and tissue sections. To assess the homogeneity of the analyte distribution and preservation of sample integrity, optical and scanning electron microscopy, helium ion microscopy, laser ablation inductively coupled plasma mass spectrometry, and time-of-flight secondary ion mass spectrometry were used. This demonstrates the broad applicability of the newly developed sample carrier and its value for complementary imaging.</p>\",\"PeriodicalId\":49232,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1116/1.5143203\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/1.5143203\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/1.5143203","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

如今,高分辨率成像技术以一种互补的方式广泛应用于深入了解复杂现象。对于真正互补的分析方法,需要一种通用的样品载体,该载体适用于每种分析技术所需的不同制备方法。该样品载体应能够容纳不同的分析物,并在沉积和制备过程中保持其原始的组成和排列。本文研制了一种新型的样品载体,由硅片和亲水聚合物涂层组成。通过交联和焙烧,增强了聚合物涂层对溶剂的鲁棒性。此外,开发了一种新的uv -臭氧清洗方法,增强了聚合物涂层与晶圆的附着力,并确保了所得样品载体的表面性能的可重复性。采用紫外-臭氧清洗的新方法恢复了样品载体的亲水性,同时避免了紫外线对聚合物的损伤。采用非接触式三维光学轮廓术和接触角测量来监测涂层的亲水性。聚合物涂层的亲水性保证了其海绵状的行为,因此在分析物悬浮液沉积时,溶剂和溶质通过被聚合物吸收而从分析物中分离出来。这一特征对于限制咖啡环效应和保存分析物沉积时的天然特性是必不可少的。使用悬浮液、细菌细胞和组织切片中的纳米颗粒测试了样品载体对各种样品类型的适用性。为了评估分析物分布的均匀性和样品完整性的保存,使用了光学和扫描电子显微镜、氦离子显微镜、激光烧蚀电感耦合等离子体质谱和飞行时间二次离子体质谱。这证明了新开发的样品载体的广泛适用性及其在互补成像中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface cleaning and sample carrier for complementary high-resolution imaging techniques.

Nowadays, high-resolution imaging techniques are extensively applied in a complementary way to gain insights into complex phenomena. For a truly complementary analytical approach, a common sample carrier is required that is suitable for the different preparation methods necessary for each analytical technique. This sample carrier should be capable of accommodating diverse analytes and maintaining their pristine composition and arrangement during deposition and preparation. In this work, a new type of sample carrier consisting of a silicon wafer with a hydrophilic polymer coating was developed. The robustness of the polymer coating toward solvents was strengthened by cross-linking and stoving. Furthermore, a new method of UV-ozone cleaning was developed that enhances the adhesion of the polymer coating to the wafer and ensures reproducible surface-properties of the resulting sample carrier. The hydrophilicity of the sample carrier was recovered applying the new method of UV-ozone cleaning, while avoiding UV-induced damages to the polymer. Noncontact 3D optical profilometry and contact angle measurements were used to monitor the hydrophilicity of the coating. The hydrophilicity of the polymer coating ensures its spongelike behavior so that upon the deposition of an analyte suspension, the solvent and solutes are separated from the analyte by absorption into the polymer. This feature is essential to limit the coffee-ring effect and preserve the native identity of an analyte upon deposition. The suitability of the sample carrier for various sample types was tested using nanoparticles from suspension, bacterial cells, and tissue sections. To assess the homogeneity of the analyte distribution and preservation of sample integrity, optical and scanning electron microscopy, helium ion microscopy, laser ablation inductively coupled plasma mass spectrometry, and time-of-flight secondary ion mass spectrometry were used. This demonstrates the broad applicability of the newly developed sample carrier and its value for complementary imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases BIOPHYSICS-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
4.10
自引率
0.00%
发文量
35
审稿时长
>12 weeks
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
期刊最新文献
Interleukin 1β and lipopolysaccharides induction dictate chondrocyte morphological properties and reduce cellular roughness and adhesion energy comparatively. Tutorial on the instrumentation of sum frequency generation vibrational spectroscopy: Using a Ti:sapphire based system as an example. Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn. Time-of-flight secondary ion mass spectrometry analysis of hair samples using unsupervised artificial neural network. Ar-gas cluster ion beam in ToF-SIMS for peptide and protein analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1