{"title":"异质元种群网络上传染病模型的矩闭性。","authors":"Shanshan Feng, Zhen Jin","doi":"10.1186/s13662-018-1801-x","DOIUrl":null,"url":null,"abstract":"<p><p>The global transmission of infectious diseases poses huge threats to human. Traditional heterogeneous mean-field models on metapopulation networks ignore the heterogeneity of individuals who are in different disease states in subpopulations with the same degree, resulting in inaccuracy in predicting the spread of disease. In this paper, we take heterogeneity of susceptible and infectious individuals in subpopulations with the same degree into account, and propose a deterministic unclosed general model according to Markov process on metapopulation networks to curve the global transmission of diseases precisely. Then we make the general model closed by putting forward two common assumptions: a two-dimensional constant distribution and a two-dimensional log-normal distribution, where the former is equivalent to the heterogeneous mean-field model, and the latter is a system of weighted ordinary differential equations. Further we make a stability analysis for two closed models and illustrate the results by numerical simulations. Next, we conduct a series of numerical simulations and stochastic simulations. Results indicate that our general model extends and optimizes the mean-field model. Finally, we investigate the impacts of total mobility rate on disease transmission and find that timely and comprehensive travel restriction in the early stage is an effective prevention and control of infectious diseases.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-018-1801-x","citationCount":"5","resultStr":"{\"title\":\"Moment closure of infectious diseases model on heterogeneous metapopulation network.\",\"authors\":\"Shanshan Feng, Zhen Jin\",\"doi\":\"10.1186/s13662-018-1801-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global transmission of infectious diseases poses huge threats to human. Traditional heterogeneous mean-field models on metapopulation networks ignore the heterogeneity of individuals who are in different disease states in subpopulations with the same degree, resulting in inaccuracy in predicting the spread of disease. In this paper, we take heterogeneity of susceptible and infectious individuals in subpopulations with the same degree into account, and propose a deterministic unclosed general model according to Markov process on metapopulation networks to curve the global transmission of diseases precisely. Then we make the general model closed by putting forward two common assumptions: a two-dimensional constant distribution and a two-dimensional log-normal distribution, where the former is equivalent to the heterogeneous mean-field model, and the latter is a system of weighted ordinary differential equations. Further we make a stability analysis for two closed models and illustrate the results by numerical simulations. Next, we conduct a series of numerical simulations and stochastic simulations. Results indicate that our general model extends and optimizes the mean-field model. Finally, we investigate the impacts of total mobility rate on disease transmission and find that timely and comprehensive travel restriction in the early stage is an effective prevention and control of infectious diseases.</p>\",\"PeriodicalId\":53311,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13662-018-1801-x\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-018-1801-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-018-1801-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Moment closure of infectious diseases model on heterogeneous metapopulation network.
The global transmission of infectious diseases poses huge threats to human. Traditional heterogeneous mean-field models on metapopulation networks ignore the heterogeneity of individuals who are in different disease states in subpopulations with the same degree, resulting in inaccuracy in predicting the spread of disease. In this paper, we take heterogeneity of susceptible and infectious individuals in subpopulations with the same degree into account, and propose a deterministic unclosed general model according to Markov process on metapopulation networks to curve the global transmission of diseases precisely. Then we make the general model closed by putting forward two common assumptions: a two-dimensional constant distribution and a two-dimensional log-normal distribution, where the former is equivalent to the heterogeneous mean-field model, and the latter is a system of weighted ordinary differential equations. Further we make a stability analysis for two closed models and illustrate the results by numerical simulations. Next, we conduct a series of numerical simulations and stochastic simulations. Results indicate that our general model extends and optimizes the mean-field model. Finally, we investigate the impacts of total mobility rate on disease transmission and find that timely and comprehensive travel restriction in the early stage is an effective prevention and control of infectious diseases.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.