直接热解高效合成大孔掺硫有序介孔碳的前驱体设计

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Molecular Systems Design & Engineering Pub Date : 2023-06-23 DOI:10.1039/D3ME00043E
Mark Robertson, Anthony Griffin, Alejandro Guillen Obando, Andrew Barbour, Ryan Davis and Zhe Qiang
{"title":"直接热解高效合成大孔掺硫有序介孔碳的前驱体设计","authors":"Mark Robertson, Anthony Griffin, Alejandro Guillen Obando, Andrew Barbour, Ryan Davis and Zhe Qiang","doi":"10.1039/D3ME00043E","DOIUrl":null,"url":null,"abstract":"<p >The production of ordered mesoporous carbons (OMCs) can be achieved by direct pyrolysis of self-assembled polymers. Typically, these systems require a majority phase capable of producing carbon, and a minority phase to form pores through a thermal decomposition step. While polyacrylonitrile (PAN)-based block copolymers (BCPs) have been broadly reported as OMC precursors, these materials have a relatively narrow processing window for developing ordered nanostructures and often require sophisticated chemistry for BCP synthesis, followed by long crosslinking times at high temperatures. Alternatively, olefinic thermoplastic elastomers (TPEs) can be convered to large-pore OMCs after two steps of sulfonation-induced crosslinking and carbonization. Building on this platform, this work focuses on the precursor design concept for the efficient synthesis of OMCs through employing low-cost and widely available polystyrene-<em>block</em>-polybutadiene-<em>block</em>-polystyrene (SBS), which contains unsaturated bonds along the polymer backbone. As a result, the presence of alkene groups greatly enhances the kinetics of sulfonation-induced crosslinking reaction, which can be completed within only 20 min at 150 °C, nearly an order of magnitude faster than a recently reported TPE system containing a fully saturated polymer backbone. The crosslinking reaction enables the production of OMCs with pore sizes (∼9.5 nm) larger than most conventional soft-templating systems, while also doping sulfur heteroatoms into the carbon framework of the final products. This work demonstrates efficient synthesis of OMCs from TPE precursors which have a great potential for scaled production, and the resulting products may have broad applications such as for drug delivery and energy storage.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precursor design for efficient synthesis of large-pore, sulfur-doped ordered mesoporous carbon through direct pyrolysis†\",\"authors\":\"Mark Robertson, Anthony Griffin, Alejandro Guillen Obando, Andrew Barbour, Ryan Davis and Zhe Qiang\",\"doi\":\"10.1039/D3ME00043E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The production of ordered mesoporous carbons (OMCs) can be achieved by direct pyrolysis of self-assembled polymers. Typically, these systems require a majority phase capable of producing carbon, and a minority phase to form pores through a thermal decomposition step. While polyacrylonitrile (PAN)-based block copolymers (BCPs) have been broadly reported as OMC precursors, these materials have a relatively narrow processing window for developing ordered nanostructures and often require sophisticated chemistry for BCP synthesis, followed by long crosslinking times at high temperatures. Alternatively, olefinic thermoplastic elastomers (TPEs) can be convered to large-pore OMCs after two steps of sulfonation-induced crosslinking and carbonization. Building on this platform, this work focuses on the precursor design concept for the efficient synthesis of OMCs through employing low-cost and widely available polystyrene-<em>block</em>-polybutadiene-<em>block</em>-polystyrene (SBS), which contains unsaturated bonds along the polymer backbone. As a result, the presence of alkene groups greatly enhances the kinetics of sulfonation-induced crosslinking reaction, which can be completed within only 20 min at 150 °C, nearly an order of magnitude faster than a recently reported TPE system containing a fully saturated polymer backbone. The crosslinking reaction enables the production of OMCs with pore sizes (∼9.5 nm) larger than most conventional soft-templating systems, while also doping sulfur heteroatoms into the carbon framework of the final products. This work demonstrates efficient synthesis of OMCs from TPE precursors which have a great potential for scaled production, and the resulting products may have broad applications such as for drug delivery and energy storage.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/me/d3me00043e\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/me/d3me00043e","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自组装聚合物的直接热解制备有序介孔碳(OMCs)是可行的。通常,这些系统需要能够产生碳的多数相,以及通过热分解步骤形成孔隙的少数相。虽然聚丙烯腈(PAN)基嵌段共聚物(BCP)被广泛报道为OMC前体,但这些材料在开发有序纳米结构方面的加工窗口相对较窄,并且通常需要复杂的化学反应来合成BCP,其次是高温下的长交联时间。另外,烯烃热塑性弹性体(TPEs)可以通过磺化诱导交联和碳化两个步骤转化为大孔OMCs。在此基础上,本工作重点研究了利用低成本和广泛使用的聚苯乙烯-嵌段聚丁二烯-嵌段聚苯乙烯(SBS)的前驱体设计概念,该前驱体在聚合物主链上含有不饱和键。因此,烯烃基团的存在大大提高了磺化诱导交联反应的动力学,在150°C下只需20分钟即可完成,比最近报道的含有完全饱和聚合物主链的TPE体系快了近一个数量级。交联反应使omc的孔径(~ 9.5 nm)比大多数传统的软模板系统大,同时还将硫杂原子掺杂到最终产品的碳框架中。这项工作证明了从TPE前体高效合成omc具有很大的规模化生产潜力,所得到的产品可能具有广泛的应用,如药物输送和能量储存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precursor design for efficient synthesis of large-pore, sulfur-doped ordered mesoporous carbon through direct pyrolysis†

The production of ordered mesoporous carbons (OMCs) can be achieved by direct pyrolysis of self-assembled polymers. Typically, these systems require a majority phase capable of producing carbon, and a minority phase to form pores through a thermal decomposition step. While polyacrylonitrile (PAN)-based block copolymers (BCPs) have been broadly reported as OMC precursors, these materials have a relatively narrow processing window for developing ordered nanostructures and often require sophisticated chemistry for BCP synthesis, followed by long crosslinking times at high temperatures. Alternatively, olefinic thermoplastic elastomers (TPEs) can be convered to large-pore OMCs after two steps of sulfonation-induced crosslinking and carbonization. Building on this platform, this work focuses on the precursor design concept for the efficient synthesis of OMCs through employing low-cost and widely available polystyrene-block-polybutadiene-block-polystyrene (SBS), which contains unsaturated bonds along the polymer backbone. As a result, the presence of alkene groups greatly enhances the kinetics of sulfonation-induced crosslinking reaction, which can be completed within only 20 min at 150 °C, nearly an order of magnitude faster than a recently reported TPE system containing a fully saturated polymer backbone. The crosslinking reaction enables the production of OMCs with pore sizes (∼9.5 nm) larger than most conventional soft-templating systems, while also doping sulfur heteroatoms into the carbon framework of the final products. This work demonstrates efficient synthesis of OMCs from TPE precursors which have a great potential for scaled production, and the resulting products may have broad applications such as for drug delivery and energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
期刊最新文献
Back cover Molecular design of protein-based materials – state of the art, opportunities and challenges at the interface between materials engineering and synthetic biology Multi-site esterification: a tunable, reversible strategy to tailor therapeutic peptides for delivery Controlling the Photochromism of Zirconium Pyromellitic Diimide-Based Metal-Organic Frameworks through Coordinating Solvents On the design of optimal computer experiments to model solvent effects on reaction kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1