{"title":"一种新的半足动物模式系统Murgantia histrionica中类似oncopelus的基因表达模式提示了古代调控网络的分化。","authors":"Jessica Hernandez, Leslie Pick, Katie Reding","doi":"10.1186/s13227-020-00154-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Much has been learned about basic biology from studies of insect model systems. The pre-eminent insect model system, <i>Drosophila melanogaster</i>, is a holometabolous insect with a derived mode of segment formation. While additional insect models have been pioneered in recent years, most of these fall within holometabolous lineages. In contrast, hemimetabolous insects have garnered less attention, although they include agricultural pests, vectors of human disease, and present numerous evolutionary novelties in form and function. The milkweed bug, <i>Oncopeltus fasciatus</i> (order: Hemiptera)-close outgroup to holometabolous insects-is an emerging model system. However, comparative studies within this order are limited as many phytophagous hemipterans are difficult to stably maintain in the lab due to their reliance on fresh plants, deposition of eggs within plant material, and long development time from embryo to adult.</p><p><strong>Results: </strong>Here we present the harlequin bug, <i>Murgantia histrionica</i>, as a new hemipteran model species. <i>Murgantia</i>-a member of the stink bug family Pentatomidae which shares a common ancestor with <i>Oncopeltus</i> ~ 200 mya-is easy to rear in the lab, produces a large number of eggs, and is amenable to molecular genetic techniques. We use <i>Murgantia</i> to ask whether Pair-Rule Genes (PRGs) are deployed in ways similar to holometabolous insects or to <i>Oncopeltus</i>. Specifically, PRGs <i>even</i>-<i>skipped, odd</i>-<i>skipped, paired</i> and <i>sloppy</i>-<i>paired</i> are initially expressed in PR-stripes in <i>Drosophila</i> and a number of holometabolous insects but in segmental-stripes in <i>Oncopeltus</i>. We found that these genes are likewise expressed in segmental-stripes in <i>Murgantia,</i> while <i>runt</i> displays partial PR-character in both species. Also like <i>Oncopeltus</i>, <i>E75A</i> is expressed in a clear PR-pattern in blastoderm- and germband-stage <i>Murgantia</i> embryos, although it plays no role in segmentation in <i>Drosophila</i>. Thus, genes diagnostic of the split between holometabolous insects and <i>Oncopeltus</i> are expressed in an <i>Oncopeltus</i>-like fashion during <i>Murgantia</i> development.</p><p><strong>Conclusions: </strong>The similarity in gene expression between <i>Murgantia</i> and <i>Oncopeltus</i> suggests that <i>Oncopeltus</i> is not a sole outlier species in failing to utilize orthologs of <i>Drosophila</i> PRGs for PR-patterning. Rather, strategies deployed for PR-patterning, including the use of <i>E75A</i> in the PRG-network, are likely conserved within Hemiptera, and possibly more broadly among hemimetabolous insects.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-020-00154-x","citationCount":"6","resultStr":"{\"title\":\"<i>Oncopeltus</i>-like gene expression patterns in <i>Murgantia histrionica</i>, a new hemipteran model system, suggest ancient regulatory network divergence.\",\"authors\":\"Jessica Hernandez, Leslie Pick, Katie Reding\",\"doi\":\"10.1186/s13227-020-00154-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Much has been learned about basic biology from studies of insect model systems. The pre-eminent insect model system, <i>Drosophila melanogaster</i>, is a holometabolous insect with a derived mode of segment formation. While additional insect models have been pioneered in recent years, most of these fall within holometabolous lineages. In contrast, hemimetabolous insects have garnered less attention, although they include agricultural pests, vectors of human disease, and present numerous evolutionary novelties in form and function. The milkweed bug, <i>Oncopeltus fasciatus</i> (order: Hemiptera)-close outgroup to holometabolous insects-is an emerging model system. However, comparative studies within this order are limited as many phytophagous hemipterans are difficult to stably maintain in the lab due to their reliance on fresh plants, deposition of eggs within plant material, and long development time from embryo to adult.</p><p><strong>Results: </strong>Here we present the harlequin bug, <i>Murgantia histrionica</i>, as a new hemipteran model species. <i>Murgantia</i>-a member of the stink bug family Pentatomidae which shares a common ancestor with <i>Oncopeltus</i> ~ 200 mya-is easy to rear in the lab, produces a large number of eggs, and is amenable to molecular genetic techniques. We use <i>Murgantia</i> to ask whether Pair-Rule Genes (PRGs) are deployed in ways similar to holometabolous insects or to <i>Oncopeltus</i>. Specifically, PRGs <i>even</i>-<i>skipped, odd</i>-<i>skipped, paired</i> and <i>sloppy</i>-<i>paired</i> are initially expressed in PR-stripes in <i>Drosophila</i> and a number of holometabolous insects but in segmental-stripes in <i>Oncopeltus</i>. We found that these genes are likewise expressed in segmental-stripes in <i>Murgantia,</i> while <i>runt</i> displays partial PR-character in both species. Also like <i>Oncopeltus</i>, <i>E75A</i> is expressed in a clear PR-pattern in blastoderm- and germband-stage <i>Murgantia</i> embryos, although it plays no role in segmentation in <i>Drosophila</i>. Thus, genes diagnostic of the split between holometabolous insects and <i>Oncopeltus</i> are expressed in an <i>Oncopeltus</i>-like fashion during <i>Murgantia</i> development.</p><p><strong>Conclusions: </strong>The similarity in gene expression between <i>Murgantia</i> and <i>Oncopeltus</i> suggests that <i>Oncopeltus</i> is not a sole outlier species in failing to utilize orthologs of <i>Drosophila</i> PRGs for PR-patterning. Rather, strategies deployed for PR-patterning, including the use of <i>E75A</i> in the PRG-network, are likely conserved within Hemiptera, and possibly more broadly among hemimetabolous insects.</p>\",\"PeriodicalId\":49076,\"journal\":{\"name\":\"Evodevo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2020-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13227-020-00154-x\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evodevo\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13227-020-00154-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-020-00154-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Oncopeltus-like gene expression patterns in Murgantia histrionica, a new hemipteran model system, suggest ancient regulatory network divergence.
Background: Much has been learned about basic biology from studies of insect model systems. The pre-eminent insect model system, Drosophila melanogaster, is a holometabolous insect with a derived mode of segment formation. While additional insect models have been pioneered in recent years, most of these fall within holometabolous lineages. In contrast, hemimetabolous insects have garnered less attention, although they include agricultural pests, vectors of human disease, and present numerous evolutionary novelties in form and function. The milkweed bug, Oncopeltus fasciatus (order: Hemiptera)-close outgroup to holometabolous insects-is an emerging model system. However, comparative studies within this order are limited as many phytophagous hemipterans are difficult to stably maintain in the lab due to their reliance on fresh plants, deposition of eggs within plant material, and long development time from embryo to adult.
Results: Here we present the harlequin bug, Murgantia histrionica, as a new hemipteran model species. Murgantia-a member of the stink bug family Pentatomidae which shares a common ancestor with Oncopeltus ~ 200 mya-is easy to rear in the lab, produces a large number of eggs, and is amenable to molecular genetic techniques. We use Murgantia to ask whether Pair-Rule Genes (PRGs) are deployed in ways similar to holometabolous insects or to Oncopeltus. Specifically, PRGs even-skipped, odd-skipped, paired and sloppy-paired are initially expressed in PR-stripes in Drosophila and a number of holometabolous insects but in segmental-stripes in Oncopeltus. We found that these genes are likewise expressed in segmental-stripes in Murgantia, while runt displays partial PR-character in both species. Also like Oncopeltus, E75A is expressed in a clear PR-pattern in blastoderm- and germband-stage Murgantia embryos, although it plays no role in segmentation in Drosophila. Thus, genes diagnostic of the split between holometabolous insects and Oncopeltus are expressed in an Oncopeltus-like fashion during Murgantia development.
Conclusions: The similarity in gene expression between Murgantia and Oncopeltus suggests that Oncopeltus is not a sole outlier species in failing to utilize orthologs of Drosophila PRGs for PR-patterning. Rather, strategies deployed for PR-patterning, including the use of E75A in the PRG-network, are likely conserved within Hemiptera, and possibly more broadly among hemimetabolous insects.
期刊介绍:
EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.
The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution.
All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology