Marco Albrecht, Philippe Lucarelli, Dagmar Kulms, Thomas Sauter
{"title":"黑色素瘤的计算模型。","authors":"Marco Albrecht, Philippe Lucarelli, Dagmar Kulms, Thomas Sauter","doi":"10.1186/s12976-020-00126-7","DOIUrl":null,"url":null,"abstract":"<p><p>Genes, proteins, or cells influence each other and consequently create patterns, which can be increasingly better observed by experimental biology and medicine. Thereby, descriptive methods of statistics and bioinformatics sharpen and structure our perception. However, additionally considering the interconnectivity between biological elements promises a deeper and more coherent understanding of melanoma. For instance, integrative network-based tools and well-grounded inductive in silico research reveal disease mechanisms, stratify patients, and support treatment individualization. This review gives an overview of different modeling techniques beyond statistics, shows how different strategies align with the respective medical biology, and identifies possible areas of new computational melanoma research.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222475/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational models of melanoma.\",\"authors\":\"Marco Albrecht, Philippe Lucarelli, Dagmar Kulms, Thomas Sauter\",\"doi\":\"10.1186/s12976-020-00126-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genes, proteins, or cells influence each other and consequently create patterns, which can be increasingly better observed by experimental biology and medicine. Thereby, descriptive methods of statistics and bioinformatics sharpen and structure our perception. However, additionally considering the interconnectivity between biological elements promises a deeper and more coherent understanding of melanoma. For instance, integrative network-based tools and well-grounded inductive in silico research reveal disease mechanisms, stratify patients, and support treatment individualization. This review gives an overview of different modeling techniques beyond statistics, shows how different strategies align with the respective medical biology, and identifies possible areas of new computational melanoma research.</p>\",\"PeriodicalId\":51195,\"journal\":{\"name\":\"Theoretical Biology and Medical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology and Medical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12976-020-00126-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12976-020-00126-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Genes, proteins, or cells influence each other and consequently create patterns, which can be increasingly better observed by experimental biology and medicine. Thereby, descriptive methods of statistics and bioinformatics sharpen and structure our perception. However, additionally considering the interconnectivity between biological elements promises a deeper and more coherent understanding of melanoma. For instance, integrative network-based tools and well-grounded inductive in silico research reveal disease mechanisms, stratify patients, and support treatment individualization. This review gives an overview of different modeling techniques beyond statistics, shows how different strategies align with the respective medical biology, and identifies possible areas of new computational melanoma research.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.