Shane C Allen, Jessica A Widman, Anisha Datta, Laura J Suggs
{"title":"动态细胞外基质硬化诱导上皮细胞的表型转化和迁移。","authors":"Shane C Allen, Jessica A Widman, Anisha Datta, Laura J Suggs","doi":"10.1093/intbio/zyaa012","DOIUrl":null,"url":null,"abstract":"<p><p>Soft tissue tumors, including breast cancer, become stiffer throughout disease progression. This increase in stiffness has been shown to correlate to malignant phenotype and epithelial-to-mesenchymal transition (EMT) in vitro. Unlike current models, utilizing static increases in matrix stiffness, our group has previously created a system that allows for dynamic stiffening of an alginate-matrigel composite hydrogel to mirror the native dynamic process. Here, we utilize this system to evaluate the role of matrix stiffness on EMT and metastasis both in vitro and in vivo. Epithelial cells were seen to lose normal morphology and become protrusive and migratory after stiffening. This shift corresponded to a loss of epithelial markers and gain of mesenchymal markers in both the cell clusters and migrated cells. Furthermore, stiffening in a murine model reduced tumor burden and increased migratory behavior prior to tumor formation. Inhibition of FAK and PI3K in vitro abrogated the morphologic and migratory transformation of epithelial cell clusters. This work demonstrates the key role extracellular matrix stiffening has in tumor progression through integrin signaling and, in particular, its ability to drive EMT-related changes and metastasis.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 6","pages":"161-174"},"PeriodicalIF":1.5000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa012","citationCount":"14","resultStr":"{\"title\":\"Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells.\",\"authors\":\"Shane C Allen, Jessica A Widman, Anisha Datta, Laura J Suggs\",\"doi\":\"10.1093/intbio/zyaa012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soft tissue tumors, including breast cancer, become stiffer throughout disease progression. This increase in stiffness has been shown to correlate to malignant phenotype and epithelial-to-mesenchymal transition (EMT) in vitro. Unlike current models, utilizing static increases in matrix stiffness, our group has previously created a system that allows for dynamic stiffening of an alginate-matrigel composite hydrogel to mirror the native dynamic process. Here, we utilize this system to evaluate the role of matrix stiffness on EMT and metastasis both in vitro and in vivo. Epithelial cells were seen to lose normal morphology and become protrusive and migratory after stiffening. This shift corresponded to a loss of epithelial markers and gain of mesenchymal markers in both the cell clusters and migrated cells. Furthermore, stiffening in a murine model reduced tumor burden and increased migratory behavior prior to tumor formation. Inhibition of FAK and PI3K in vitro abrogated the morphologic and migratory transformation of epithelial cell clusters. This work demonstrates the key role extracellular matrix stiffening has in tumor progression through integrin signaling and, in particular, its ability to drive EMT-related changes and metastasis.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"12 6\",\"pages\":\"161-174\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/intbio/zyaa012\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyaa012\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyaa012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells.
Soft tissue tumors, including breast cancer, become stiffer throughout disease progression. This increase in stiffness has been shown to correlate to malignant phenotype and epithelial-to-mesenchymal transition (EMT) in vitro. Unlike current models, utilizing static increases in matrix stiffness, our group has previously created a system that allows for dynamic stiffening of an alginate-matrigel composite hydrogel to mirror the native dynamic process. Here, we utilize this system to evaluate the role of matrix stiffness on EMT and metastasis both in vitro and in vivo. Epithelial cells were seen to lose normal morphology and become protrusive and migratory after stiffening. This shift corresponded to a loss of epithelial markers and gain of mesenchymal markers in both the cell clusters and migrated cells. Furthermore, stiffening in a murine model reduced tumor burden and increased migratory behavior prior to tumor formation. Inhibition of FAK and PI3K in vitro abrogated the morphologic and migratory transformation of epithelial cell clusters. This work demonstrates the key role extracellular matrix stiffening has in tumor progression through integrin signaling and, in particular, its ability to drive EMT-related changes and metastasis.
期刊介绍:
Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems.
Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity.
Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.