{"title":"目标归一化和惩罚参数对基于惩罚边界交集分解的进化多目标优化算法的影响","authors":"Lei Chen;Kalyanmoy Deb;Hai-Lin Liu;Qingfu Zhang","doi":"10.1162/evco_a_00276","DOIUrl":null,"url":null,"abstract":"<para>An objective normalization strategy is essential in any evolutionary multiobjective or many-objective optimization (EMO or EMaO) algorithm, due to the distance calculations between objective vectors required to compute diversity and convergence of population members. For the decomposition-based EMO/EMaO algorithms involving the Penalty Boundary Intersection (PBI) metric, normalization is an important matter due to the computation of two distance metrics. In this article, we make a theoretical analysis of the effect of instabilities in the normalization process on the performance of PBI-based MOEA/D and a proposed PBI-based NSGA-III procedure. Although the effect is well recognized in the literature, few theoretical studies have been done so far to understand its true nature and the choice of a suitable penalty parameter value for an arbitrary problem. The developed theoretical results have been corroborated with extensive experimental results on three to 15-objective convex and non-convex instances of DTLZ and WFG problems. The article, makes important theoretical conclusions on PBI-based decomposition algorithms derived from the study.</para>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"29 1","pages":"157-186"},"PeriodicalIF":4.6000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/evco_a_00276","citationCount":"12","resultStr":"{\"title\":\"Effect of Objective Normalization and Penalty Parameter on Penalty Boundary Intersection Decomposition-Based Evolutionary Many-Objective Optimization Algorithms\",\"authors\":\"Lei Chen;Kalyanmoy Deb;Hai-Lin Liu;Qingfu Zhang\",\"doi\":\"10.1162/evco_a_00276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<para>An objective normalization strategy is essential in any evolutionary multiobjective or many-objective optimization (EMO or EMaO) algorithm, due to the distance calculations between objective vectors required to compute diversity and convergence of population members. For the decomposition-based EMO/EMaO algorithms involving the Penalty Boundary Intersection (PBI) metric, normalization is an important matter due to the computation of two distance metrics. In this article, we make a theoretical analysis of the effect of instabilities in the normalization process on the performance of PBI-based MOEA/D and a proposed PBI-based NSGA-III procedure. Although the effect is well recognized in the literature, few theoretical studies have been done so far to understand its true nature and the choice of a suitable penalty parameter value for an arbitrary problem. The developed theoretical results have been corroborated with extensive experimental results on three to 15-objective convex and non-convex instances of DTLZ and WFG problems. The article, makes important theoretical conclusions on PBI-based decomposition algorithms derived from the study.</para>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\"29 1\",\"pages\":\"157-186\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1162/evco_a_00276\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9367092/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9367092/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Effect of Objective Normalization and Penalty Parameter on Penalty Boundary Intersection Decomposition-Based Evolutionary Many-Objective Optimization Algorithms
An objective normalization strategy is essential in any evolutionary multiobjective or many-objective optimization (EMO or EMaO) algorithm, due to the distance calculations between objective vectors required to compute diversity and convergence of population members. For the decomposition-based EMO/EMaO algorithms involving the Penalty Boundary Intersection (PBI) metric, normalization is an important matter due to the computation of two distance metrics. In this article, we make a theoretical analysis of the effect of instabilities in the normalization process on the performance of PBI-based MOEA/D and a proposed PBI-based NSGA-III procedure. Although the effect is well recognized in the literature, few theoretical studies have been done so far to understand its true nature and the choice of a suitable penalty parameter value for an arbitrary problem. The developed theoretical results have been corroborated with extensive experimental results on three to 15-objective convex and non-convex instances of DTLZ and WFG problems. The article, makes important theoretical conclusions on PBI-based decomposition algorithms derived from the study.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.