器官大小的确定:需要关注生长速度,而不是大小。

IF 1 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY International Journal of Developmental Biology Pub Date : 2020-01-01 DOI:10.1387/ijdb.190302cc
Carmen M A Coelho
{"title":"器官大小的确定:需要关注生长速度,而不是大小。","authors":"Carmen M A Coelho","doi":"10.1387/ijdb.190302cc","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of growth and the determination of organ-size in animals is an area of research that has received much attention during the past two and a half decades. Classic regeneration and cell-competition studies performed during the last century suggested that for size to be determined, organ-size is sensed and this sense of size feeds back into the growth control mechanism such that growth stops at the \"correct\" size. Recent work using Drosophila imaginal discs as a system has provided a particularly detailed cellular and molecular understanding of growth. Yet, a clear mechanistic basis for size-sensing has not emerged. I re-examine these studies from a different perspective and ask whether there is scope for alternate modes of size control in which size does not need to be sensed.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":"64 4-5-6","pages":"299-318"},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1387/ijdb.190302cc","citationCount":"0","resultStr":"{\"title\":\"Determination of organ size: a need to focus on growth rate, not size.\",\"authors\":\"Carmen M A Coelho\",\"doi\":\"10.1387/ijdb.190302cc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The regulation of growth and the determination of organ-size in animals is an area of research that has received much attention during the past two and a half decades. Classic regeneration and cell-competition studies performed during the last century suggested that for size to be determined, organ-size is sensed and this sense of size feeds back into the growth control mechanism such that growth stops at the \\\"correct\\\" size. Recent work using Drosophila imaginal discs as a system has provided a particularly detailed cellular and molecular understanding of growth. Yet, a clear mechanistic basis for size-sensing has not emerged. I re-examine these studies from a different perspective and ask whether there is scope for alternate modes of size control in which size does not need to be sensed.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":\"64 4-5-6\",\"pages\":\"299-318\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1387/ijdb.190302cc\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.190302cc\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.190302cc","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的25年里,动物的生长调节和器官大小的确定是一个受到广泛关注的研究领域。在上个世纪进行的经典再生和细胞竞争研究表明,为了确定大小,器官的大小是被感知的,这种大小的感觉反馈到生长控制机制中,这样生长就停止在“正确”的大小上。最近使用果蝇想象盘作为系统的工作提供了对生长的特别详细的细胞和分子理解。然而,尺寸感知的明确机制基础尚未出现。我从不同的角度重新审视了这些研究,并询问是否存在不需要感知尺寸的尺寸控制的替代模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of organ size: a need to focus on growth rate, not size.

The regulation of growth and the determination of organ-size in animals is an area of research that has received much attention during the past two and a half decades. Classic regeneration and cell-competition studies performed during the last century suggested that for size to be determined, organ-size is sensed and this sense of size feeds back into the growth control mechanism such that growth stops at the "correct" size. Recent work using Drosophila imaginal discs as a system has provided a particularly detailed cellular and molecular understanding of growth. Yet, a clear mechanistic basis for size-sensing has not emerged. I re-examine these studies from a different perspective and ask whether there is scope for alternate modes of size control in which size does not need to be sensed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
审稿时长
2 months
期刊介绍: The International Journal of Developmental Biology (ISSN: 0214- 6282) is an independent, not for profit scholarly journal, published by scientists, for scientists. The journal publishes papers which throw light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties and cancer. Technical, historical or theoretical approaches also fall within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid publication; free unlimited color reproduction; no page charges; free publication of online supplementary material; free publication of audio files (MP3 type); one-to-one personalized attention at all stages during the editorial process. An easy online submission facility and an open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the journal offers free online subscriptions to academic institutions in developing countries.
期刊最新文献
Single-cell transcriptome profiling reveals distinct expression patterns among genes in the mouse incisor dental pulp. DNA methyltransferase (Dnmt) silencing causes increased Cdx2 and Nanog levels in surviving embryos. Characterization of the developing axolotl nasal cavity supports multiple evolution of the vertebrate choana. The Dyslexia-associated gene KIAA0319L is involved in neuronal migration in the developing chick visual system. Circ-JA760602 promotes the apoptosis of hypoxia-induced cardiomyocytes by transcriptionally suppressing BCL2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1