Olga Taran, Shideh Rezaeifar, Taras Holotyak, Slava Voloshynovskiy
{"title":"通过加密眼镜的机器学习:通过基于密钥的多样化聚合对抗对抗性攻击。","authors":"Olga Taran, Shideh Rezaeifar, Taras Holotyak, Slava Voloshynovskiy","doi":"10.1186/s13635-020-00106-x","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, classification techniques based on deep neural networks (DNN) were widely used in many fields such as computer vision, natural language processing, and self-driving cars. However, the vulnerability of the DNN-based classification systems to adversarial attacks questions their usage in many critical applications. Therefore, the development of robust DNN-based classifiers is a critical point for the future deployment of these methods. Not less important issue is understanding of the mechanisms behind this vulnerability. Additionally, it is not completely clear how to link machine learning with cryptography to create an information advantage of the defender over the attacker. In this paper, we propose a key-based diversified aggregation (KDA) mechanism as a defense strategy in a gray- and black-box scenario. KDA assumes that the attacker (i) knows the architecture of classifier and the used defense strategy, (ii) has an access to the training data set, but (iii) does not know a secret key and does not have access to the internal states of the system. The robustness of the system is achieved by a specially designed key-based randomization. The proposed randomization prevents the gradients' back propagation and restricts the attacker to create a \"bypass\" system. The randomization is performed simultaneously in several channels. Each channel introduces its own randomization in a special transform domain. The sharing of a secret key between the training and test stages creates an information advantage to the defender. Finally, the aggregation of soft outputs from each channel stabilizes the results and increases the reliability of the final score. The performed experimental evaluation demonstrates a high robustness and universality of the KDA against state-of-the-art gradient-based gray-box transferability attacks and the non-gradient-based black-box attacks (The results reported in this paper have been partially presented in CVPR 2019 (Taran et al., Defending against adversarial attacks by randomized diversification, 2019) & ICIP 2019 (Taran et al., Robustification of deep net classifiers by key-based diversified aggregation with pre-filtering, 2019)).</p>","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"2020 1","pages":"10"},"PeriodicalIF":2.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13635-020-00106-x","citationCount":"6","resultStr":"{\"title\":\"Machine learning through cryptographic glasses: combating adversarial attacks by key-based diversified aggregation.\",\"authors\":\"Olga Taran, Shideh Rezaeifar, Taras Holotyak, Slava Voloshynovskiy\",\"doi\":\"10.1186/s13635-020-00106-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, classification techniques based on deep neural networks (DNN) were widely used in many fields such as computer vision, natural language processing, and self-driving cars. However, the vulnerability of the DNN-based classification systems to adversarial attacks questions their usage in many critical applications. Therefore, the development of robust DNN-based classifiers is a critical point for the future deployment of these methods. Not less important issue is understanding of the mechanisms behind this vulnerability. Additionally, it is not completely clear how to link machine learning with cryptography to create an information advantage of the defender over the attacker. In this paper, we propose a key-based diversified aggregation (KDA) mechanism as a defense strategy in a gray- and black-box scenario. KDA assumes that the attacker (i) knows the architecture of classifier and the used defense strategy, (ii) has an access to the training data set, but (iii) does not know a secret key and does not have access to the internal states of the system. The robustness of the system is achieved by a specially designed key-based randomization. The proposed randomization prevents the gradients' back propagation and restricts the attacker to create a \\\"bypass\\\" system. The randomization is performed simultaneously in several channels. Each channel introduces its own randomization in a special transform domain. The sharing of a secret key between the training and test stages creates an information advantage to the defender. Finally, the aggregation of soft outputs from each channel stabilizes the results and increases the reliability of the final score. The performed experimental evaluation demonstrates a high robustness and universality of the KDA against state-of-the-art gradient-based gray-box transferability attacks and the non-gradient-based black-box attacks (The results reported in this paper have been partially presented in CVPR 2019 (Taran et al., Defending against adversarial attacks by randomized diversification, 2019) & ICIP 2019 (Taran et al., Robustification of deep net classifiers by key-based diversified aggregation with pre-filtering, 2019)).</p>\",\"PeriodicalId\":46070,\"journal\":{\"name\":\"EURASIP Journal on Information Security\",\"volume\":\"2020 1\",\"pages\":\"10\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13635-020-00106-x\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13635-020-00106-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-020-00106-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Machine learning through cryptographic glasses: combating adversarial attacks by key-based diversified aggregation.
In recent years, classification techniques based on deep neural networks (DNN) were widely used in many fields such as computer vision, natural language processing, and self-driving cars. However, the vulnerability of the DNN-based classification systems to adversarial attacks questions their usage in many critical applications. Therefore, the development of robust DNN-based classifiers is a critical point for the future deployment of these methods. Not less important issue is understanding of the mechanisms behind this vulnerability. Additionally, it is not completely clear how to link machine learning with cryptography to create an information advantage of the defender over the attacker. In this paper, we propose a key-based diversified aggregation (KDA) mechanism as a defense strategy in a gray- and black-box scenario. KDA assumes that the attacker (i) knows the architecture of classifier and the used defense strategy, (ii) has an access to the training data set, but (iii) does not know a secret key and does not have access to the internal states of the system. The robustness of the system is achieved by a specially designed key-based randomization. The proposed randomization prevents the gradients' back propagation and restricts the attacker to create a "bypass" system. The randomization is performed simultaneously in several channels. Each channel introduces its own randomization in a special transform domain. The sharing of a secret key between the training and test stages creates an information advantage to the defender. Finally, the aggregation of soft outputs from each channel stabilizes the results and increases the reliability of the final score. The performed experimental evaluation demonstrates a high robustness and universality of the KDA against state-of-the-art gradient-based gray-box transferability attacks and the non-gradient-based black-box attacks (The results reported in this paper have been partially presented in CVPR 2019 (Taran et al., Defending against adversarial attacks by randomized diversification, 2019) & ICIP 2019 (Taran et al., Robustification of deep net classifiers by key-based diversified aggregation with pre-filtering, 2019)).
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy