碳纳米管治疗应用的再评估:一种宏伟和未来的药物载体。

IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY Critical Reviews in Therapeutic Drug Carrier Systems Pub Date : 2020-01-01 DOI:10.1615/CritRevTherDrugCarrierSyst.2020032570
Bharti Mangla, Shamama Javed, Kanchan Kohli, Aarif Ahsan, Waquar Ahsan
{"title":"碳纳米管治疗应用的再评估:一种宏伟和未来的药物载体。","authors":"Bharti Mangla,&nbsp;Shamama Javed,&nbsp;Kanchan Kohli,&nbsp;Aarif Ahsan,&nbsp;Waquar Ahsan","doi":"10.1615/CritRevTherDrugCarrierSyst.2020032570","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon nanotubes (CNTs) have been identified as one of the most advanced and versatile nanovectors, theranostics, and futuristic drug delivery tools for highly effective delivery of genes, drugs, and biomolecules, as well as for use in bioimaging and as biosensors. CNTs have drawn tremendous attention and interest from researchers worldwide in the past two decades owing to a number of unique characteristics including well defined physicochemical properties, large surface area, in addition to exclusive electrical and optical properties. Numerous recent literature related to the design and applications of CNTs were studied and summarized accordingly. Special emphasis was given for the applications of CNTs in drug targeting. Specific targeting of anticancer drugs such as cisplatin, doxorubicin, taxol, gemcitabine, and methotrexate, and delivery of small interfering RNA, micro-RNA, as well as plasmid DNA have been successfully assisted using CNTs. All the major applications of CNTs were summarized in detail with possible toxicity concerns associated with them. As far as their toxicity is concerned, it was noticed that the functionalized CNTs pose little toxicity and do not have immunogenic effects. In conclusion, CNTs showed great potential in developing a new generation of carriers for various drugs and related biomolecules. The application of CNTs ranges from physics to chemistry and now they are expanding their roles in the therapeutic drug delivery in the modern healthcare system. With applications in every imaginable route of administration, CNTs bring therapeutic benefits to society. The pharmaceutical, biopharmaceutical, pharmacokinetic, pharmacodynamic, and clinical efficacy of CNTs is explored in detail in this review.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reassessment of Therapeutic Applications of Carbon Nanotubes: A Majestic and Futuristic Drug Carrier.\",\"authors\":\"Bharti Mangla,&nbsp;Shamama Javed,&nbsp;Kanchan Kohli,&nbsp;Aarif Ahsan,&nbsp;Waquar Ahsan\",\"doi\":\"10.1615/CritRevTherDrugCarrierSyst.2020032570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon nanotubes (CNTs) have been identified as one of the most advanced and versatile nanovectors, theranostics, and futuristic drug delivery tools for highly effective delivery of genes, drugs, and biomolecules, as well as for use in bioimaging and as biosensors. CNTs have drawn tremendous attention and interest from researchers worldwide in the past two decades owing to a number of unique characteristics including well defined physicochemical properties, large surface area, in addition to exclusive electrical and optical properties. Numerous recent literature related to the design and applications of CNTs were studied and summarized accordingly. Special emphasis was given for the applications of CNTs in drug targeting. Specific targeting of anticancer drugs such as cisplatin, doxorubicin, taxol, gemcitabine, and methotrexate, and delivery of small interfering RNA, micro-RNA, as well as plasmid DNA have been successfully assisted using CNTs. All the major applications of CNTs were summarized in detail with possible toxicity concerns associated with them. As far as their toxicity is concerned, it was noticed that the functionalized CNTs pose little toxicity and do not have immunogenic effects. In conclusion, CNTs showed great potential in developing a new generation of carriers for various drugs and related biomolecules. The application of CNTs ranges from physics to chemistry and now they are expanding their roles in the therapeutic drug delivery in the modern healthcare system. With applications in every imaginable route of administration, CNTs bring therapeutic benefits to society. The pharmaceutical, biopharmaceutical, pharmacokinetic, pharmacodynamic, and clinical efficacy of CNTs is explored in detail in this review.</p>\",\"PeriodicalId\":50614,\"journal\":{\"name\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2020032570\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Therapeutic Drug Carrier Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2020032570","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2

摘要

碳纳米管(CNTs)已被确定为最先进和通用的纳米载体之一,治疗学和未来的药物递送工具,用于高效地递送基因,药物和生物分子,以及用于生物成像和生物传感器。在过去的二十年中,碳纳米管由于具有明确的物理化学性质、较大的表面积以及独特的电学和光学性质等一系列独特的特性,引起了全世界研究人员的极大关注和兴趣。本文对近年来大量与碳纳米管的设计和应用相关的文献进行了研究和总结。特别强调了碳纳米管在药物靶向中的应用。抗癌药物如顺铂、阿霉素、紫杉醇、吉西他滨和甲氨蝶呤的特异性靶向,以及小干扰RNA、微RNA和质粒DNA的递送已经成功地使用了碳纳米管。详细总结了碳纳米管的所有主要应用及其可能的毒性问题。就其毒性而言,我们注意到功能化的碳纳米管毒性很小,不具有免疫原性作用。综上所述,CNTs在开发各种药物和相关生物分子的新一代载体方面具有很大的潜力。碳纳米管的应用范围从物理到化学,现在它们正在扩大其在现代医疗保健系统中治疗性药物输送中的作用。CNTs应用于各种可想象的给药途径,为社会带来治疗益处。本综述详细探讨了碳纳米管的药学、生物药学、药代动力学、药效学和临床疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reassessment of Therapeutic Applications of Carbon Nanotubes: A Majestic and Futuristic Drug Carrier.

Carbon nanotubes (CNTs) have been identified as one of the most advanced and versatile nanovectors, theranostics, and futuristic drug delivery tools for highly effective delivery of genes, drugs, and biomolecules, as well as for use in bioimaging and as biosensors. CNTs have drawn tremendous attention and interest from researchers worldwide in the past two decades owing to a number of unique characteristics including well defined physicochemical properties, large surface area, in addition to exclusive electrical and optical properties. Numerous recent literature related to the design and applications of CNTs were studied and summarized accordingly. Special emphasis was given for the applications of CNTs in drug targeting. Specific targeting of anticancer drugs such as cisplatin, doxorubicin, taxol, gemcitabine, and methotrexate, and delivery of small interfering RNA, micro-RNA, as well as plasmid DNA have been successfully assisted using CNTs. All the major applications of CNTs were summarized in detail with possible toxicity concerns associated with them. As far as their toxicity is concerned, it was noticed that the functionalized CNTs pose little toxicity and do not have immunogenic effects. In conclusion, CNTs showed great potential in developing a new generation of carriers for various drugs and related biomolecules. The application of CNTs ranges from physics to chemistry and now they are expanding their roles in the therapeutic drug delivery in the modern healthcare system. With applications in every imaginable route of administration, CNTs bring therapeutic benefits to society. The pharmaceutical, biopharmaceutical, pharmacokinetic, pharmacodynamic, and clinical efficacy of CNTs is explored in detail in this review.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
18.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Therapeutic uses of a variety of drug carrier systems have significant impact on the treatment and potential cure of many chronic diseases, including cancer, diabetes mellitus, psoriasis, parkinsons, Alzheimer, rheumatoid arthritis, HIV infection, infectious diseases, asthma, and drug addiction. Scientific efforts in these areas are multidisciplinary, involving the physical, biological, medical, pharmaceutical, biological materials, and engineering fields. Articles concerning this field appear in a wide variety of journals. With the vast increase in the number of articles and the tendency to fragment science, it becomes increasingly difficult to keep abreast of the literature and to sort out and evaluate the importance and reliability of the data, especially when proprietary considerations are involved. Abstracts and noncritical articles often do not provide a sufficiently reliable basis for proper assessment of a given field without the additional perusal of the original literature. This journal bridges this gap by publishing authoritative, objective, comprehensive multidisciplinary critical review papers with emphasis on formulation and delivery systems. Both invited and contributed articles are subject to peer review.
期刊最新文献
Current Review on Nanophytomedicines in the Treatment of Oral Cancer: Recent Trends and Treatment Prospects. Recent Updates on Phytopharmaceuticals-Based Novel Phytosomal Systems and Their Clinical Trial Status: A Translational Perspective. Enhancing Microemulsion based Therapeutic Drug Delivery: Exploring Surfactants, Co-surfactants, and Quality by Design Strategies within Pseudo-ternary Phase Diagrams NOVEL DRUG DELIVERY TOOLS FOR BETTER PERMEATION AND SKIN CANCER TREATMENT Nanobiocatalysts and Nanozymes: Enzyme-Inspired Nanomaterials for Industrial and Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1