{"title":"早期糖尿病对视网膜内神经元的影响。","authors":"Erika D Eggers, Teresia A Carreon","doi":"10.1017/S095252382000005X","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S095252382000005X","citationCount":"13","resultStr":"{\"title\":\"The effects of early diabetes on inner retinal neurons.\",\"authors\":\"Erika D Eggers, Teresia A Carreon\",\"doi\":\"10.1017/S095252382000005X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.</p>\",\"PeriodicalId\":23556,\"journal\":{\"name\":\"Visual Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S095252382000005X\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S095252382000005X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S095252382000005X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The effects of early diabetes on inner retinal neurons.
Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.
期刊介绍:
Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.