首页 > 最新文献

Visual Neuroscience最新文献

英文 中文
Chemically induced cone degeneration in the 13-lined ground squirrel. 化学诱导的 13 线地松鼠锥体退化。
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2024-05-10 DOI: 10.1017/S0952523824000014
Hannah M Follett, Emma Warr, Jenna Grieshop, Ching Tzu Yu, Mina Gaffney, Owen R Bowie, Jong Won Lee, Sergey Tarima, Dana K Merriman, Joseph Carroll

Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.

视网膜变性的动物模型对于了解疾病和测试潜在疗法至关重要。诱导变性通常需要施用化学物质,通过破坏新陈代谢途径、信号传导途径或蛋白质合成来杀死光感受器。虽然化学诱导变性已在多种动物(小鼠、大鼠、兔子、猫科动物、13线地松鼠(13-LGS)、猪、小鸡)中得到证实,但很少有研究使用无创高分辨率视网膜成像来监测体内细胞效应。在这里,我们使用纵向扫描光眼底镜(SLO)、光学相干断层扫描和自适应光学 SLO 成像技术,对信噪比大、锥体占优势的 13-LGS (46 只动物,52 只眼睛)进行了研究,以检查在 2019 年和 2020 年整个活动季节静脉注射化学物质后的视网膜结构。我们发现,除了一只眼睛接受了最低浓度的碘乙酸外,其他所有眼睛都诱发了严重的泛视网膜损伤。虽然硝普钠成功诱导了视网膜外层的变性,但结果不一,50% 的对侧对照眼也观察到了损伤。三磷酸腺苷和妥尼霉素诱导视网膜外层特异性损伤的结果各不相同,而注射了硫辛酸的眼睛则没有出现变性迹象。鉴于我们观察到的损伤的差异性,对这种差异性可能的生理根源进行后续研究至关重要。这些额外的研究将进一步推动化学诱导的光感受器变性模型在视锥显性 13-LGS 中的应用。
{"title":"Chemically induced cone degeneration in the 13-lined ground squirrel.","authors":"Hannah M Follett, Emma Warr, Jenna Grieshop, Ching Tzu Yu, Mina Gaffney, Owen R Bowie, Jong Won Lee, Sergey Tarima, Dana K Merriman, Joseph Carroll","doi":"10.1017/S0952523824000014","DOIUrl":"10.1017/S0952523824000014","url":null,"abstract":"<p><p>Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the <i>in vivo</i> cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pre-stimulus bioelectrical activity in lightadapted ERG under blue versus white background - CORRIGENDUM. 蓝色与白色背景下光适应 ERG 的刺激前生物电活动 - CORRIGENDUM。
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2024-01-05 DOI: 10.1017/S0952523823000044
Katherine Tsay, Sara Safari, Abdullah Abou-Samra, Jan Kremers, Radouil Tzekov
{"title":"Pre-stimulus bioelectrical activity in lightadapted ERG under blue versus white background - CORRIGENDUM.","authors":"Katherine Tsay, Sara Safari, Abdullah Abou-Samra, Jan Kremers, Radouil Tzekov","doi":"10.1017/S0952523823000044","DOIUrl":"10.1017/S0952523823000044","url":null,"abstract":"","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808881/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of the visual system in ray-finned fishes. 魟鳍鱼类视觉系统的进化。
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2023-12-20 DOI: 10.1017/S0952523823000020
Michael H Hofmann, Isabelle C Gebhardt

The vertebrate eye allows to capture an enormous amount of detail about the surrounding world which can only be exploited with sophisticated central information processing. Furthermore, vision is an active process due to head and eye movements that enables the animal to change the gaze and actively select objects to investigate in detail. The entire system requires a coordinated coevolution of its parts to work properly. Ray-finned fishes offer a unique opportunity to study the evolution of the visual system due to the high diversity in all of its parts. Here, we are bringing together information on retinal specializations (fovea), central visual centers (brain morphology studies), and eye movements in a large number of ray-finned fishes in a cladistic framework. The nucleus glomerulosus-inferior lobe system is well developed only in Acanthopterygii. A fovea, independent eye movements, and an enlargement of the nucleus glomerulosus-inferior lobe system coevolved at least five times independently within Acanthopterygii. This suggests that the nucleus glomerulosus-inferior lobe system is involved in advanced object recognition which is especially well developed in association with a fovea and independent eye movements. None of the non-Acanthopterygii have a fovea (except for some deep sea fish) or independent eye movements and they also lack important parts of the glomerulosus-inferior lobe system. This suggests that structures for advanced visual object recognition evolved within ray-finned fishes independent of the ones in tetrapods and non-ray-finned fishes as a result of a coevolution of retinal, central, and oculomotor structures.

脊椎动物的眼睛能够捕捉到周围世界的大量细节,而这些细节只有通过复杂的中央信息处理才能加以利用。此外,由于头部和眼球的运动,视觉是一个主动的过程,使动物能够改变注视的方向,并主动选择要详细研究的对象。整个系统需要各部分协调共同进化才能正常工作。鳐形目鱼类视觉系统各部分的高度多样性为研究视觉系统的进化提供了一个独特的机会。在此,我们将大量鳐形目鱼类的视网膜特化(眼窝)、视觉中枢(脑形态学研究)和眼球运动的信息汇集到一个支系框架中。肾小球核-下叶系统仅在棘鱼类中发育良好。眼窝、独立的眼球运动和肾小球-下叶核系统的增大在翼手目中至少独立进化了五次。这表明,肾小球-下叶核系统参与了高级物体识别,而这种识别与眼窝和独立眼球运动密切相关。非鸟纲动物都没有眼窝(一些深海鱼类除外)或独立的眼球运动,它们也缺乏肾小球-下叶系统的重要部分。这表明,鳐形目鱼类高级视觉物体识别结构的进化是视网膜、中枢和眼球运动结构共同进化的结果,与四足类和非鳐形目鱼类的结构无关。
{"title":"Evolution of the visual system in ray-finned fishes.","authors":"Michael H Hofmann, Isabelle C Gebhardt","doi":"10.1017/S0952523823000020","DOIUrl":"10.1017/S0952523823000020","url":null,"abstract":"<p><p>The vertebrate eye allows to capture an enormous amount of detail about the surrounding world which can only be exploited with sophisticated central information processing. Furthermore, vision is an active process due to head and eye movements that enables the animal to change the gaze and actively select objects to investigate in detail. The entire system requires a coordinated coevolution of its parts to work properly. Ray-finned fishes offer a unique opportunity to study the evolution of the visual system due to the high diversity in all of its parts. Here, we are bringing together information on retinal specializations (fovea), central visual centers (brain morphology studies), and eye movements in a large number of ray-finned fishes in a cladistic framework. The nucleus glomerulosus-inferior lobe system is well developed only in Acanthopterygii. A fovea, independent eye movements, and an enlargement of the nucleus glomerulosus-inferior lobe system coevolved at least five times independently within Acanthopterygii. This suggests that the nucleus glomerulosus-inferior lobe system is involved in advanced object recognition which is especially well developed in association with a fovea and independent eye movements. None of the non-Acanthopterygii have a fovea (except for some deep sea fish) or independent eye movements and they also lack important parts of the glomerulosus-inferior lobe system. This suggests that structures for advanced visual object recognition evolved within ray-finned fishes independent of the ones in tetrapods and non-ray-finned fishes as a result of a coevolution of retinal, central, and oculomotor structures.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138809975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pre-stimulus bioelectrical activity in light-adapted ERG under blue versus white background 蓝色与白色背景下光适应 ERG 的刺激前生物电活动
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2023-12-13 DOI: 10.1017/s0952523823000032
Katherine Tsay, Sara Safari, Abdullah Abu-Samra, Jan Kremers, Radouil Tzekov

To compare the baseline signal between two conditions used to generate the photopic negative response (PhNR) of the full-field electroretinogram (ERG): red flash on a blue background (RoB) and white flash on a white background (LA3). The secondary purpose is to identify how the level of pre-stimulus signal affects obtaining an unambiguous PhNR component. A retrospective chart review was conducted on four cohorts of patients undergoing routine ERG testing. In each group, LA3 was recorded the same way while RoB was generated differently using various luminances of red and blue light. The background bioelectrical activity 30 ms before the flash was extracted, and the root mean square (RMS) of the signal was calculated and compared between RoB and LA3 using Wilcoxon test. Pre-stimulus noise was significantly higher under RoB stimulation versus LA3 in all four conditions for both right and left eyes (ratio RoB/LA3 RMS 1.70 and 1.57 respectively, p < 0.033). There was also no significant difference between the RMS of either LA3 or RoB across protocols, indicating that the baseline noise across cohorts were comparable. Additionally, pre-stimulus noise was higher in signals where PhNR was not clearly identifiable as an ERG component versus signals with the presence of unambiguous PhNR component under RoB in all four groups for both eyes (p < 0.05), whereas the difference under LA3 was less pronounced. Our study suggests that LA3 produces less background bioelectrical activity, likely due to decreased facial muscle activity. As it seems that the pre-stimulus signal level affects PhNR recordability, LA3 may also produce a better-quality signal compared to RoB. Therefore, until conditions for a comparable bioelectrical activity under RoB are established, we believe that LA3 should be considered at least as a supplementary method to evaluate retinal ganglion cell function by ERG.

比较两种产生全场视网膜电图(ERG)光负响应(PhNR)的条件:蓝底红闪(RoB)和白底白闪(LA3)的基线信号。第二个目的是确定预刺激信号的水平如何影响获得明确的PhNR成分。对四组接受常规ERG测试的患者进行回顾性图表回顾。在每一组中,LA3的记录方式相同,而RoB的产生方式不同,使用不同亮度的红蓝光。提取闪光灯前30ms的背景生物电活动,计算信号的均方根(RMS),并采用Wilcoxon检验比较RoB和LA3的差异。在所有四种情况下,右眼和左眼在RoB刺激下的预刺激噪声均显著高于LA3(比值RoB/LA3 RMS分别为1.70和1.57,p <0.033)。不同方案的LA3或RoB的均方根值之间也没有显著差异,表明不同队列的基线噪声具有可比性。此外,在所有四组的双眼中,与在RoB下存在明确的PhNR成分的信号相比,PhNR作为ERG成分的信号中的预刺激噪声更高(p <0.05),而LA3组差异不明显。我们的研究表明,LA3产生较少的背景生物电活动,可能是由于面部肌肉活动减少。由于预刺激信号水平似乎会影响PhNR的可记录性,因此与RoB相比,LA3也可能产生质量更好的信号。因此,在罗伯下可比较生物电活性的条件建立之前,我们认为LA3至少可以作为ERG评价视网膜神经节细胞功能的补充方法。
{"title":"Pre-stimulus bioelectrical activity in light-adapted ERG under blue versus white background","authors":"Katherine Tsay, Sara Safari, Abdullah Abu-Samra, Jan Kremers, Radouil Tzekov","doi":"10.1017/s0952523823000032","DOIUrl":"https://doi.org/10.1017/s0952523823000032","url":null,"abstract":"<p>To compare the baseline signal between two conditions used to generate the photopic negative response (PhNR) of the full-field electroretinogram (ERG): red flash on a blue background (RoB) and white flash on a white background (LA3). The secondary purpose is to identify how the level of pre-stimulus signal affects obtaining an unambiguous PhNR component. A retrospective chart review was conducted on four cohorts of patients undergoing routine ERG testing. In each group, LA3 was recorded the same way while RoB was generated differently using various luminances of red and blue light. The background bioelectrical activity 30 ms before the flash was extracted, and the root mean square (RMS) of the signal was calculated and compared between RoB and LA3 using Wilcoxon test. Pre-stimulus noise was significantly higher under RoB stimulation versus LA3 in all four conditions for both right and left eyes (ratio RoB/LA3 RMS 1.70 and 1.57 respectively, <span>p</span> &lt; 0.033). There was also no significant difference between the RMS of either LA3 or RoB across protocols, indicating that the baseline noise across cohorts were comparable. Additionally, pre-stimulus noise was higher in signals where PhNR was not clearly identifiable as an ERG component versus signals with the presence of unambiguous PhNR component under RoB in all four groups for both eyes (<span>p</span> &lt; 0.05), whereas the difference under LA3 was less pronounced. Our study suggests that LA3 produces less background bioelectrical activity, likely due to decreased facial muscle activity. As it seems that the pre-stimulus signal level affects PhNR recordability, LA3 may also produce a better-quality signal compared to RoB. Therefore, until conditions for a comparable bioelectrical activity under RoB are established, we believe that LA3 should be considered at least as a supplementary method to evaluate retinal ganglion cell function by ERG.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell. 灵长类星爆无毛细胞模型中方向选择的两种机制。
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2023-05-23 DOI: 10.1017/S0952523823000019
Jiajia Wu, Yeon Jin Kim, Dennis M Dacey, John B Troy, Robert G Smith

In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities.

在最近的一项研究中,首次在猕猴视网膜的星爆无突细胞中记录了视觉信号,并且在小鼠和兔子的树突尖端附近记录了钙信号的定向偏差。从胞体到胞尖的刺激运动比从胞尖到胞体的刺激运动产生更大的钙信号。影响兴奋性突触后电流时空累积的两种机制被认为有助于星爆树突尖端的定向信号传导:(1)一种“形态学”机制,在这种机制中,兴奋性突触电流沿树突的电紧张传播优先将树突尖端的双极细胞输入累加在离心方向的刺激运动中;(2)“时空”机制依赖于近端和远端双极细胞输入的时间过程差异,有利于离心刺激运动。为了探索这两种机制在灵长类动物中的作用,我们基于猕猴星爆细胞的连接组重建及其来自持续和短暂双极细胞类型的突触输入分布建立了一个现实的计算模型。我们的模型表明,这两种机制都可以启动星爆树突的方向选择性,但它们的贡献取决于刺激的时空特性。具体来说,在小的视觉物体高速运动时,形态机制占主导地位,而在大的视觉物体低速运动时,时空机制贡献最大。
{"title":"Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell.","authors":"Jiajia Wu, Yeon Jin Kim, Dennis M Dacey, John B Troy, Robert G Smith","doi":"10.1017/S0952523823000019","DOIUrl":"10.1017/S0952523823000019","url":null,"abstract":"<p><p>In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a \"morphological\" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a \"space-time\" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9685400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Colin Blakemore (1944–2022) 科林·布莱克莫尔(1944-2022)
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2023-02-09 DOI: 10.1017/S0952523822000074
L. Spillmann
Colin Blakemore, who died in Oxford on June 27 last year at the age of 78, was a world-renowned British neuroscientist and a highly influential andmuch-admiredmember of the vision community. As a medical student at Cambridge, Blakemore was influenced by Richard Gregory, and he subsequently maintained a keen interest in all aspects of visual science. He is best remembered for his studies on the development of the visual brain in kittens and the demonstration of neural plasticity. His findings were crucial for a better understanding of how brain cells organize themselves in response to the visual environment after birth. After graduating with a First at Cambridge, Blakemore went to the University of California at Berkeley in 1965 for his Ph.D. There he worked with Horace Barlow and Jack Pettigrew on binocular depth discrimination in the cat. He found that the response of binocular units in area V1 depended crucially on the alignment of the binocular stimulus in the two eyes. When the stimulus in one eye was off target, the response was vetoed. Blakemore returned to Cambridge in 1968 to take up a lectureship in physiology and, 3 years later, to become a Fellow at Downing College. It was during that time that he left the study of perception behind in favor of combining behavioral methods and neurophysiological techniques for the study of the visual system. In a ground-breaking experiment with Grahame Cooper, in 1970, he demonstrated that a kitten, which was reared in complete darkness since birth and then exposed to a vertically striped cylinder for 5 hours every day, was severely visually impaired when tested half a year later. In addition to showing no placement response and being seemingly oblivious toward an approaching object, the kitten behaved as if it was blind to a moving horizontal line. Conversely, a kitten that had been exposed to a horizontally striped cylinder, was blind to a moving vertical line. These results showed that the striate cortex could bemodified by selective experience early in life and that normal visual experience is crucial for normal maturation. When the authors recorded from cortical cells, the typical orientation tuning was gravely disturbed and only those cells tuned to near-vertical (or horizontal) responded, consistent with the behavioral deficit. This experiment triggered the great Nature–Nurture debate in the seventies and eighties. Numerous studies were performed in Cambridge and by other vision scientists, to further elucidate the early development of vision and visual perception. In the early 1970s, for example, Blakemore and Richard Van Sluyters embarked on a series of deprivation studies in kittens, in which they surgically closed the lids of one eye and showed that the normal binocular dominance of cortical cells shifted entirely to the other eye. Conversely, when the previously open eye was closed and the initially closed eye reopened, the ocular dominance was reversed, so that now every cell was dominated
科林·布莱克莫尔于去年6月27日在牛津逝世,享年78岁。他是一位享誉世界的英国神经科学家,也是视觉界一位极具影响力且备受尊敬的成员。作为剑桥大学医学院的学生,布莱克莫尔受到理查德·格雷戈里的影响,他随后对视觉科学的各个方面都保持着浓厚的兴趣。他最著名的研究是小猫视觉大脑的发育和神经可塑性的证明。他的发现对于更好地理解出生后大脑细胞如何组织自身以应对视觉环境至关重要。在剑桥大学以一等成绩毕业后,布莱克莫尔于1965年前往加州大学伯克利分校攻读博士学位。在那里,他与霍勒斯·巴洛和杰克·佩蒂格鲁一起研究猫的双目深度识别。他发现V1区的双眼单元的反应关键取决于双眼刺激在两只眼睛中的排列。当一只眼睛的刺激偏离目标时,反应被否决。1968年,布莱克莫尔回到剑桥,开始担任生理学讲师,三年后,他成为唐宁学院的研究员。正是在那段时间里,他放弃了对感知的研究,转而将行为方法和神经生理学技术结合起来研究视觉系统。1970年,他与格雷厄姆·库珀(graham Cooper)进行了一项开创性的实验,证明了一只小猫从出生起就在完全黑暗的环境中长大,然后每天在一个垂直条纹的圆柱体中暴露5小时,在半年后的测试中,它的视力严重受损。除了没有表现出对位置的反应,似乎对接近的物体视而不见之外,小猫表现得好像对移动的水平线视而不见。相反,一只小猫被暴露在一个水平条纹的圆柱体中,对移动的垂直线视而不见。这些结果表明,纹状皮层可以通过生命早期的选择性经验进行修饰,正常的视觉经验对正常的成熟至关重要。当作者从皮质细胞中记录时,典型的定向调谐受到严重干扰,只有那些调谐到接近垂直(或水平)的细胞有反应,这与行为缺陷相一致。这个实验引发了七、八十年代关于先天与后天的大争论。剑桥大学和其他视觉科学家进行了大量的研究,以进一步阐明视觉和视觉感知的早期发展。例如,在20世纪70年代早期,布莱克莫尔和理查德·范·斯鲁特对小猫进行了一系列剥夺性研究,他们通过手术关闭一只眼睛的眼睑,结果发现正常双眼的皮质细胞完全转移到了另一只眼睛。相反,当先前打开的眼睛闭上,而最初关闭的眼睛重新打开时,眼睛的优势被逆转,因此现在每个细胞都被最初被剥夺的眼睛的输入所主导。重要的是,这只在长达3个月的关键时期内起作用,高峰约为30天。布莱克莫尔、安东尼·莫夫森和范·斯卢特斯更进了一步,他们把小猫暴露在特定空间频率的光栅中,发现它们可以使皮质细胞偏向于那个频率。因此,神经元的反应可以通过选择性地暴露于光栅条纹的间距来改变。这些结果的重要性,以及哈佛医学院的托斯滕·维塞尔(TorstenWiesel)的研究结果,立即被临床眼科医生如冈特·冯·诺登(Gunter von Noorden)认识到。维塞尔对猫咪和猴子进行了手术诱导斜视的研究。长期以来,他们一直试图了解斜视儿童弱视的发展,这种情况下,一只眼睛的视觉分辨率和对比敏感度由于两只眼睛的不对准而不可逆转地受损。基于这些结果,世界各地的眼科医生现在对4岁之前的斜视儿童进行矫正手术,也就是在人类视力的关键时期。布莱克莫尔还指出,当小猫在它们的眼睛前面放一个扩散器,从而模糊了视网膜图像时,皮质细胞变得没有反应。这就解释了为什么患有先天性白内障(即晶状体混浊)的儿童在生命早期由于缺乏模式视力而变得弱视或失明。布莱克莫尔是一位天赋异禀的演说家,他以优雅、才华和魅力来传达他的成果和观察。因此,32岁的他成为最年轻的在BBC广播上发表著名的里斯讲座的人也就不足为奇了。我选的题目是“心智的机制”。12年后,他还主持了一部13集的BBC电视连续剧《思维机器》。 那个时候,视觉研究正处于鼎盛时期,每隔一个月就会有新的令人兴奋的东西出现,而且有像布莱克莫尔这样的英雄可以崇拜。几本书也在印刷中证明了他独特的风格。视觉神经科学
{"title":"Colin Blakemore (1944–2022)","authors":"L. Spillmann","doi":"10.1017/S0952523822000074","DOIUrl":"https://doi.org/10.1017/S0952523822000074","url":null,"abstract":"Colin Blakemore, who died in Oxford on June 27 last year at the age of 78, was a world-renowned British neuroscientist and a highly influential andmuch-admiredmember of the vision community. As a medical student at Cambridge, Blakemore was influenced by Richard Gregory, and he subsequently maintained a keen interest in all aspects of visual science. He is best remembered for his studies on the development of the visual brain in kittens and the demonstration of neural plasticity. His findings were crucial for a better understanding of how brain cells organize themselves in response to the visual environment after birth. After graduating with a First at Cambridge, Blakemore went to the University of California at Berkeley in 1965 for his Ph.D. There he worked with Horace Barlow and Jack Pettigrew on binocular depth discrimination in the cat. He found that the response of binocular units in area V1 depended crucially on the alignment of the binocular stimulus in the two eyes. When the stimulus in one eye was off target, the response was vetoed. Blakemore returned to Cambridge in 1968 to take up a lectureship in physiology and, 3 years later, to become a Fellow at Downing College. It was during that time that he left the study of perception behind in favor of combining behavioral methods and neurophysiological techniques for the study of the visual system. In a ground-breaking experiment with Grahame Cooper, in 1970, he demonstrated that a kitten, which was reared in complete darkness since birth and then exposed to a vertically striped cylinder for 5 hours every day, was severely visually impaired when tested half a year later. In addition to showing no placement response and being seemingly oblivious toward an approaching object, the kitten behaved as if it was blind to a moving horizontal line. Conversely, a kitten that had been exposed to a horizontally striped cylinder, was blind to a moving vertical line. These results showed that the striate cortex could bemodified by selective experience early in life and that normal visual experience is crucial for normal maturation. When the authors recorded from cortical cells, the typical orientation tuning was gravely disturbed and only those cells tuned to near-vertical (or horizontal) responded, consistent with the behavioral deficit. This experiment triggered the great Nature–Nurture debate in the seventies and eighties. Numerous studies were performed in Cambridge and by other vision scientists, to further elucidate the early development of vision and visual perception. In the early 1970s, for example, Blakemore and Richard Van Sluyters embarked on a series of deprivation studies in kittens, in which they surgically closed the lids of one eye and showed that the normal binocular dominance of cortical cells shifted entirely to the other eye. Conversely, when the previously open eye was closed and the initially closed eye reopened, the ocular dominance was reversed, so that now every cell was dominated","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44326981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of glaucoma on the spatial frequency processing of scenes in central vision. 青光眼对中央视觉场景空间频率处理的影响。
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2023-02-08 DOI: 10.1017/S0952523822000086
Audrey Trouilloud, Elvia Ferry, Muriel Boucart, Louise Kauffmann, Aude Warniez, Jean-François Rouland, Carole Peyrin

Glaucoma is an eye disease characterized by a progressive vision loss usually starting in peripheral vision. However, a deficit for scene categorization is observed even in the preserved central vision of patients with glaucoma. We assessed the processing and integration of spatial frequencies in the central vision of patients with glaucoma during scene categorization, considering the severity of the disease, in comparison to age-matched controls. In the first session, participants had to categorize scenes filtered in low-spatial frequencies (LSFs) and high-spatial frequencies (HSFs) as a natural or an artificial scene. Results showed that the processing of spatial frequencies was impaired only for patients with severe glaucoma, in particular for HFS scenes. In the light of proactive models of visual perception, we investigated how LSF could guide the processing of HSF in a second session. We presented hybrid scenes (combining LSF and HSF from two scenes belonging to the same or different semantic category). Participants had to categorize the scene filtered in HSF while ignoring the scene filtered in LSF. Surprisingly, results showed that the semantic influence of LSF on HSF was greater for patients with early glaucoma than controls, and then disappeared for the severe cases. This study shows that a progressive destruction of retinal ganglion cells affects the spatial frequency processing in central vision. This deficit may, however, be compensated by increased reliance on predictive mechanisms at early stages of the disease which would however decline in more severe cases.

青光眼是一种以进行性视力丧失为特征的眼部疾病,通常始于周围视力。然而,即使在青光眼患者保留的中央视力中,也观察到场景分类的缺陷。考虑到疾病的严重程度,我们评估了青光眼患者在场景分类过程中对空间频率的处理和整合,并与年龄匹配的对照组进行了比较。在第一阶段,参与者必须将低空间频率(lsf)和高空间频率(HSFs)过滤的场景分类为自然场景或人工场景。结果表明,只有严重青光眼患者对空间频率的处理受损,尤其是对高频场景的处理。在视觉知觉的主动模式下,我们在第二阶段研究了LSF如何指导HSF的加工。我们提出了混合场景(将属于相同或不同语义类别的两个场景的LSF和HSF结合起来)。参与者必须对HSF过滤的场景进行分类,而忽略LSF过滤的场景。令人惊讶的是,结果显示LSF对早期青光眼患者HSF的语义影响大于对照组,然后在严重的青光眼患者中消失。本研究表明,视网膜神经节细胞的进行性破坏影响中央视觉的空间频率处理。然而,这一缺陷可以通过在疾病早期阶段增加对预测机制的依赖来弥补,然而,在更严重的病例中,这种依赖将下降。
{"title":"Impact of glaucoma on the spatial frequency processing of scenes in central vision.","authors":"Audrey Trouilloud,&nbsp;Elvia Ferry,&nbsp;Muriel Boucart,&nbsp;Louise Kauffmann,&nbsp;Aude Warniez,&nbsp;Jean-François Rouland,&nbsp;Carole Peyrin","doi":"10.1017/S0952523822000086","DOIUrl":"https://doi.org/10.1017/S0952523822000086","url":null,"abstract":"<p><p>Glaucoma is an eye disease characterized by a progressive vision loss usually starting in peripheral vision. However, a deficit for scene categorization is observed even in the preserved central vision of patients with glaucoma. We assessed the processing and integration of spatial frequencies in the central vision of patients with glaucoma during scene categorization, considering the severity of the disease, in comparison to age-matched controls. In the first session, participants had to categorize scenes filtered in low-spatial frequencies (LSFs) and high-spatial frequencies (HSFs) as a natural or an artificial scene. Results showed that the processing of spatial frequencies was impaired only for patients with severe glaucoma, in particular for HFS scenes. In the light of proactive models of visual perception, we investigated how LSF could guide the processing of HSF in a second session. We presented hybrid scenes (combining LSF and HSF from two scenes belonging to the same or different semantic category). Participants had to categorize the scene filtered in HSF while ignoring the scene filtered in LSF. Surprisingly, results showed that the semantic influence of LSF on HSF was greater for patients with early glaucoma than controls, and then disappeared for the severe cases. This study shows that a progressive destruction of retinal ganglion cells affects the spatial frequency processing in central vision. This deficit may, however, be compensated by increased reliance on predictive mechanisms at early stages of the disease which would however decline in more severe cases.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9970733/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10796492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Overall patterns of eye-specific retino-geniculo-cortical projections to layers III, IV, and VI in primary visual cortex of the greater galago (Otolemur crassicudatus), and correlation with cytochrome oxidase blobs. 大耳猴初级视觉皮层III层、IV层和VI层的眼特异性视网膜-视网膜皮质投影的总体模式及其与细胞色素氧化酶斑点的相关性
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2022-11-02 DOI: 10.1017/S0952523822000062
Jaime F Olavarria, Huixin Qi, Toru Takahata, Jon H Kaas

Studies in the greater galago have not provided a comprehensive description of the organization of eye-specific retino-geniculate-cortical projections to the recipient layers in V1. Here we demonstrate the overall patterns of ocular dominance domains in layers III, IV, and VI revealed following a monocular injection of the transneuronal tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP). We also correlate these patterns with the array of cytochrome oxidase (CO) blobs in tangential sections through the unfolded and flattened cortex. In layer IV, we observed for the first time that eye-specific domains form an interconnected pattern of bands 200-250 μm wide arranged such that they do not show orientation bias and do not meet the V1 border at right angles, as is the case in macaques. We also observed distinct WGA-HRP labeled patches in layers III and VI. The patches in layer III, likely corresponding to patches of K lateral geniculate nucleus (LGN) input, align with layer IV ocular dominance columns (ODCs) of the same eye dominance and overlap partially with virtually all CO blobs in both hemispheres, implying that CO blobs receive K LGN input from both eyes. We further found that CO blobs straddle the border between layer IV ODCs, such that the distribution of CO staining is approximately equal over ipsilateral and contralateral ODCs. These results, together with studies showing that a high percentage of cells in CO blobs are monocular, suggest that CO blobs consist of ipsilateral and contralateral subregions that are in register with underlying layer IV ODCs of the same eye dominance. In macaques and humans, CO blobs are centered on ODCs in layer IV. Our finding that CO blobs in galago straddle the border of neighboring layer IV ODCs suggests that this novel feature may represent an alternative way by which visual information is processed by eye-specific modular architecture in mammalian V1.

在大galago的研究还没有提供一个全面的描述在V1受体层的眼睛特异性视网膜膝状皮质投射的组织。在这里,我们展示了单眼注射经神经元示踪剂小麦胚芽凝集素结合辣根过氧化物酶(WGA-HRP)后显示的III、IV和VI层眼优势结构域的整体模式。我们还将这些模式与细胞色素氧化酶(CO)在通过展开和扁平皮质的切向切片上的排列相关联。在第四层,我们首次观察到,眼睛特定的区域形成了一个200-250 μm宽的条带相互连接的模式,这样它们就不会显示方向偏差,也不会像猕猴那样以直角满足V1边界。我们还在第三层和第六层观察到不同的WGA-HRP标记斑块。第三层的斑块可能对应于K外侧膝部核(LGN)输入的斑块,与第四层相同的眼优势柱(ODCs)对齐,并与两个半球几乎所有的CO斑点部分重叠,这表明CO斑点从两只眼睛接收K LGN输入。我们进一步发现,CO斑点横跨第四层ODCs之间的边界,因此CO染色在同侧和对侧ODCs上的分布大致相等。这些结果,再加上研究表明CO斑点中有很大比例的细胞是单眼的,表明CO斑点由同侧和对侧亚区组成,这些亚区与具有同一眼优势的底层IV层ODCs相匹配。在猕猴和人类中,CO斑点集中在第IV层的odc上。我们发现galago中的CO斑点横跨相邻的第IV层odc的边界,这表明这种新特征可能代表了哺乳动物V1中眼睛特异性模块化架构处理视觉信息的另一种方式。
{"title":"Overall patterns of eye-specific retino-geniculo-cortical projections to layers III, IV, and VI in primary visual cortex of the greater galago (<i>Otolemur crassicudatus</i>), and correlation with cytochrome oxidase blobs.","authors":"Jaime F Olavarria,&nbsp;Huixin Qi,&nbsp;Toru Takahata,&nbsp;Jon H Kaas","doi":"10.1017/S0952523822000062","DOIUrl":"https://doi.org/10.1017/S0952523822000062","url":null,"abstract":"<p><p>Studies in the greater galago have not provided a comprehensive description of the organization of eye-specific retino-geniculate-cortical projections to the recipient layers in V1. Here we demonstrate the overall patterns of ocular dominance domains in layers III, IV, and VI revealed following a monocular injection of the transneuronal tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP). We also correlate these patterns with the array of cytochrome oxidase (CO) blobs in tangential sections through the unfolded and flattened cortex. In layer IV, we observed for the first time that eye-specific domains form an interconnected pattern of bands 200-250 μm wide arranged such that they do not show orientation bias and do not meet the V1 border at right angles, as is the case in macaques. We also observed distinct WGA-HRP labeled patches in layers III and VI. The patches in layer III, likely corresponding to patches of K lateral geniculate nucleus (LGN) input, align with layer IV ocular dominance columns (ODCs) of the same eye dominance and overlap partially with virtually all CO blobs in both hemispheres, implying that CO blobs receive K LGN input from both eyes. We further found that CO blobs straddle the border between layer IV ODCs, such that the distribution of CO staining is approximately equal over ipsilateral and contralateral ODCs. These results, together with studies showing that a high percentage of cells in CO blobs are monocular, suggest that CO blobs consist of ipsilateral and contralateral subregions that are in register with underlying layer IV ODCs of the same eye dominance. In macaques and humans, CO blobs are centered on ODCs in layer IV. Our finding that CO blobs in galago straddle the border of neighboring layer IV ODCs suggests that this novel feature may represent an alternative way by which visual information is processed by eye-specific modular architecture in mammalian V1.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9242523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differences in chromatic noise suppression of luminance contrast discrimination in young and elderly people. 色光噪声对年轻人和老年人亮度对比辨别的抑制差异。
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2022-10-13 DOI: 10.1017/S0952523822000050
Rosa Maria Guimarães Brito, Bruna Rafaela Silva Sousa, Letícia Miquilini, Paulo Roney Kilpp Goulart, Marcelo Fernandes Costa, Dora Fix Ventura, Maria Izabel Tentes Cortes, Givago Silva Souza

Aging causes impairment of contrast sensitivity and chromatic discrimination, leading to changes in the perceptual interactions between color and luminance information. We aimed to investigate the influence of chromatic noise on luminance contrast thresholds in young and older adults. Forty participants were divided equally into Young (29.6 ± 6.3-year-old) and Elderly Groups (57.8 ± 6.6-year-old). They performed a luminance contrast discrimination task in the presence of chromatic noise maskers using a mosaic stimulus in a mosaic background. Four chromatic noise masking protocols were applied (protan, deutan, tritan, and no-noise protocols). We found that luminance contrast thresholds were significantly elevated by the addition of chromatic noise in both age groups (P < 0.05). In the Elderly group, but not the younger group, thresholds obtained in the tritan protocol were lower than those obtained from protan and deutan protocols (P < 0.05). For all protocols, the luminance contrast thresholds of elderly participants were higher than in young people (P < 0.01). Tritan chromatic noise was less effective in inhibiting luminance discrimination in elderly participants.

老化会导致对比敏感度和色彩辨别能力受损,从而导致颜色和亮度信息之间的感知交互作用发生变化。我们的目的是研究彩色噪声对年轻人和老年人亮度对比阈值的影响。40名参与者平均分为青年组(29.6±6.3岁)和老年组(57.8±6.6岁)。他们在彩色噪声掩蔽物存在的情况下,在马赛克背景下使用马赛克刺激进行亮度对比辨别任务。采用四种彩色噪声掩蔽方案(protan, deutan, tritan和无噪声方案)。我们发现,两个年龄组的亮度对比阈值通过添加色度噪声而显著提高(P P P
{"title":"Differences in chromatic noise suppression of luminance contrast discrimination in young and elderly people.","authors":"Rosa Maria Guimarães Brito,&nbsp;Bruna Rafaela Silva Sousa,&nbsp;Letícia Miquilini,&nbsp;Paulo Roney Kilpp Goulart,&nbsp;Marcelo Fernandes Costa,&nbsp;Dora Fix Ventura,&nbsp;Maria Izabel Tentes Cortes,&nbsp;Givago Silva Souza","doi":"10.1017/S0952523822000050","DOIUrl":"https://doi.org/10.1017/S0952523822000050","url":null,"abstract":"<p><p>Aging causes impairment of contrast sensitivity and chromatic discrimination, leading to changes in the perceptual interactions between color and luminance information. We aimed to investigate the influence of chromatic noise on luminance contrast thresholds in young and older adults. Forty participants were divided equally into Young (29.6 ± 6.3-year-old) and Elderly Groups (57.8 ± 6.6-year-old). They performed a luminance contrast discrimination task in the presence of chromatic noise maskers using a mosaic stimulus in a mosaic background. Four chromatic noise masking protocols were applied (protan, deutan, tritan, and no-noise protocols). We found that luminance contrast thresholds were significantly elevated by the addition of chromatic noise in both age groups (<i>P</i> < 0.05). In the Elderly group, but not the younger group, thresholds obtained in the tritan protocol were lower than those obtained from protan and deutan protocols (<i>P</i> < 0.05). For all protocols, the luminance contrast thresholds of elderly participants were higher than in young people (<i>P</i> < 0.01). Tritan chromatic noise was less effective in inhibiting luminance discrimination in elderly participants.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33502861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glial cell response to constant low light exposure in rat retina. 大鼠视网膜神经胶质细胞对持续弱光照射的反应。
IF 1.9 4区 医学 Q3 Neuroscience Pub Date : 2022-09-27 DOI: 10.1017/S0952523822000049
Manuel G Bruera, María M Benedetto, Mario E Guido, Alicia L Degano, María A Contin

To study the macroglia and microglia and the immune role in long-time light exposure in rat eyes, we performed glial cell characterization along the time-course of retinal degeneration induced by chronic exposure to low-intensity light. Animals were exposed to light for periods of 2, 4, 6, or 8 days, and the retinal glial response was evaluated by immunohistochemistry, western blot and real-time reverse transcription polymerase chain reaction. Retinal cells presented an increased expression of the macroglia marker GFAP, as well as increased mRNA levels of microglia markers Iba1 and CD68 after 6 days. Also, at this time-point, we found a higher number of Iba1-positive cells in the outer nuclear layer area; moreover, these cells showed the characteristic activated-microglia morphology. The expression levels of immune mediators TNF, IL-6, and chemokines CX3CR1 and CCL2 were also significantly increased after 6 days. All the events of glial activation occurred after 5-6 days of constant light exposure, when the number of photoreceptor cells has already decreased significantly. Herein, we demonstrated that glial and immune activation are secondary to neurodegeneration; in this scenario, our results suggest that photoreceptor death is an early event that occurs independently of glial-derived immune responses.

为了研究长时间光暴露对大鼠眼睛大胶质细胞和小胶质细胞的影响及其免疫作用,我们沿着慢性低强度光暴露引起的视网膜变性的时间过程对胶质细胞进行了表征。将动物暴露在光照下2、4、6或8天,通过免疫组织化学、western blot和实时逆转录聚合酶链反应来评估视网膜胶质细胞的反应。6天后,视网膜细胞大胶质细胞标记物GFAP表达增加,小胶质细胞标记物Iba1和CD68 mRNA水平升高。此外,在这个时间点,我们发现外核层区域有更多的iba1阳性细胞;此外,这些细胞表现出特有的激活小胶质细胞形态。免疫介质TNF、IL-6和趋化因子CX3CR1、CCL2的表达水平也在6天后显著升高。所有的神经胶质激活事件都发生在持续光照5-6天后,此时感光细胞数量已经明显减少。在这里,我们证明了神经胶质和免疫激活是继发于神经变性;在这种情况下,我们的结果表明,光感受器死亡是一个独立于神经胶质源性免疫反应发生的早期事件。
{"title":"Glial cell response to constant low light exposure in rat retina.","authors":"Manuel G Bruera,&nbsp;María M Benedetto,&nbsp;Mario E Guido,&nbsp;Alicia L Degano,&nbsp;María A Contin","doi":"10.1017/S0952523822000049","DOIUrl":"https://doi.org/10.1017/S0952523822000049","url":null,"abstract":"<p><p>To study the macroglia and microglia and the immune role in long-time light exposure in rat eyes, we performed glial cell characterization along the time-course of retinal degeneration induced by chronic exposure to low-intensity light. Animals were exposed to light for periods of 2, 4, 6, or 8 days, and the retinal glial response was evaluated by immunohistochemistry, western blot and real-time reverse transcription polymerase chain reaction. Retinal cells presented an increased expression of the macroglia marker GFAP, as well as increased mRNA levels of microglia markers Iba1 and CD68 after 6 days. Also, at this time-point, we found a higher number of Iba1-positive cells in the outer nuclear layer area; moreover, these cells showed the characteristic activated-microglia morphology. The expression levels of immune mediators TNF, IL-6, and chemokines CX3CR1 and CCL2 were also significantly increased after 6 days. All the events of glial activation occurred after 5-6 days of constant light exposure, when the number of photoreceptor cells has already decreased significantly. Herein, we demonstrated that glial and immune activation are secondary to neurodegeneration; in this scenario, our results suggest that photoreceptor death is an early event that occurs independently of glial-derived immune responses.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40377931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Visual Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1