章鱼Eledone的中枢脑精细结构(Lamarck, 1798)(软体动物-章鱼目)。

Q4 Neuroscience Invertebrate Neuroscience Pub Date : 2020-08-25 DOI:10.1007/s10158-020-00250-6
G Ibrahim
{"title":"章鱼Eledone的中枢脑精细结构(Lamarck, 1798)(软体动物-章鱼目)。","authors":"G Ibrahim","doi":"10.1007/s10158-020-00250-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to investigate the fine structure of the different cell types in the central brain of Eledone cirrhosa; the organelles in the neurons and the glial cells; the glial hemolymph-brain barrier; the neuro-secretions and the relationships between glial and nerve cells. The brain is surrounded by a non-cellular neurilemma followed by a single layer of perilemmal cells. Ependymal cells, highly prismatic glial cells, astrocytes, oligodendrocytes and epithelial processes were observed. The perikarya of the neurons are filled with slightly oval nuclei with heterochromatin, a strongly tortuous ER, numerous mitochondria and Golgi apparatus with two types of vesicles. In the cellular cortex, glial cells are much less numerous than the neurons and they are located preferably at the border between perikarya and neuropil. Furthermore, they send many branching shoots between the surrounding neuron perikarya and the axons. The glial cytoplasmic matrix appears more electrodense than that of the neurons. Only few ribosomes are attached to the membranes of the ER; the vast majorities are free. In the perikarya of the glial cells, mitochondria, multi-vesicular bodies, various vacuoles and vesicles are present. The essential elements of the hemolymph-brain barrier are the endothelial cells with their tight junctions. The cytoplasm contains various vesicles and mitochondria. However, two other cell types are present, the pericytes and the astrocytes, which are of great importance for the function of the hemolymph-brain barrier. The cell-cell interactions between endothelial cells, pericytes and astrocytes are as close as no other cells.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"20 3","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-020-00250-6","citationCount":"1","resultStr":"{\"title\":\"Fine structure of the central brain in the octopod Eledone cirrhosa (Lamarck, 1798) (Mollusca-Octopoda).\",\"authors\":\"G Ibrahim\",\"doi\":\"10.1007/s10158-020-00250-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to investigate the fine structure of the different cell types in the central brain of Eledone cirrhosa; the organelles in the neurons and the glial cells; the glial hemolymph-brain barrier; the neuro-secretions and the relationships between glial and nerve cells. The brain is surrounded by a non-cellular neurilemma followed by a single layer of perilemmal cells. Ependymal cells, highly prismatic glial cells, astrocytes, oligodendrocytes and epithelial processes were observed. The perikarya of the neurons are filled with slightly oval nuclei with heterochromatin, a strongly tortuous ER, numerous mitochondria and Golgi apparatus with two types of vesicles. In the cellular cortex, glial cells are much less numerous than the neurons and they are located preferably at the border between perikarya and neuropil. Furthermore, they send many branching shoots between the surrounding neuron perikarya and the axons. The glial cytoplasmic matrix appears more electrodense than that of the neurons. Only few ribosomes are attached to the membranes of the ER; the vast majorities are free. In the perikarya of the glial cells, mitochondria, multi-vesicular bodies, various vacuoles and vesicles are present. The essential elements of the hemolymph-brain barrier are the endothelial cells with their tight junctions. The cytoplasm contains various vesicles and mitochondria. However, two other cell types are present, the pericytes and the astrocytes, which are of great importance for the function of the hemolymph-brain barrier. The cell-cell interactions between endothelial cells, pericytes and astrocytes are as close as no other cells.</p>\",\"PeriodicalId\":14430,\"journal\":{\"name\":\"Invertebrate Neuroscience\",\"volume\":\"20 3\",\"pages\":\"15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10158-020-00250-6\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10158-020-00250-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-020-00250-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在探讨肝硬化中脑不同类型细胞的精细结构;神经元和神经胶质细胞中的细胞器;神经胶质血淋巴-脑屏障;神经分泌物以及神经胶质细胞和神经细胞之间的关系。大脑被一层非细胞神经膜包围,后面是一层上皮周围细胞。观察到室管膜细胞、高度棱柱状胶质细胞、星形胶质细胞、少突胶质细胞和上皮细胞。神经元核周充满异染色质的微椭圆形核,强烈扭曲的内质网,大量线粒体和两种类型的高尔基体囊泡。在细胞皮层,神经胶质细胞比神经元少得多,它们最好位于核周和神经层之间的边界。此外,它们在周围的神经元核周和轴突之间发送许多分支。神经胶质细胞质基质的电密度高于神经元。只有少数核糖体附着在内质网膜上;绝大多数都是免费的。神经胶质细胞核周内存在线粒体、多泡体、各种液泡和囊泡。血淋巴-脑屏障的基本组成部分是紧密连接的内皮细胞。细胞质中含有各种囊泡和线粒体。然而,存在另外两种细胞类型,周细胞和星形胶质细胞,它们对血淋巴-脑屏障的功能非常重要。内皮细胞、周细胞和星形胶质细胞之间的相互作用与其他细胞一样密切。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fine structure of the central brain in the octopod Eledone cirrhosa (Lamarck, 1798) (Mollusca-Octopoda).

This study aims to investigate the fine structure of the different cell types in the central brain of Eledone cirrhosa; the organelles in the neurons and the glial cells; the glial hemolymph-brain barrier; the neuro-secretions and the relationships between glial and nerve cells. The brain is surrounded by a non-cellular neurilemma followed by a single layer of perilemmal cells. Ependymal cells, highly prismatic glial cells, astrocytes, oligodendrocytes and epithelial processes were observed. The perikarya of the neurons are filled with slightly oval nuclei with heterochromatin, a strongly tortuous ER, numerous mitochondria and Golgi apparatus with two types of vesicles. In the cellular cortex, glial cells are much less numerous than the neurons and they are located preferably at the border between perikarya and neuropil. Furthermore, they send many branching shoots between the surrounding neuron perikarya and the axons. The glial cytoplasmic matrix appears more electrodense than that of the neurons. Only few ribosomes are attached to the membranes of the ER; the vast majorities are free. In the perikarya of the glial cells, mitochondria, multi-vesicular bodies, various vacuoles and vesicles are present. The essential elements of the hemolymph-brain barrier are the endothelial cells with their tight junctions. The cytoplasm contains various vesicles and mitochondria. However, two other cell types are present, the pericytes and the astrocytes, which are of great importance for the function of the hemolymph-brain barrier. The cell-cell interactions between endothelial cells, pericytes and astrocytes are as close as no other cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Invertebrate Neuroscience
Invertebrate Neuroscience NEUROSCIENCES-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include: Functional analysis of the invertebrate nervous system; Molecular neuropharmacology and toxicology; Neurogenetics and genomics; Functional anatomy; Neurodevelopment; Neuronal networks; Molecular and cellular mechanisms of behavior and behavioural plasticity.
期刊最新文献
In Vivo Bacteriophages' Application for the Prevention and Therapy of Aquaculture Animals-Chosen Aspects. Cloning of the first cDNA encoding a putative CCRFamide precursor: identification of the brain, eyestalk ganglia, and cardiac ganglion as sites of CCRFamide expression in the American lobster, Homarus americanus. Multi-marker approach for the evaluation of environmental impacts of APACS 50WG on aquatic ecosystems. Pedal serotonergic neuron clusters of the pteropod mollusc, Clione limacina, contain two morphological subtypes with different innervation targets. Pharmacological characterization of the forced swim test in Drosophila melanogaster.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1