流行病建模的主要挑战——迄今为止,我们从COVID-19流行病中学到了什么?

IF 1.6 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Zdravstveno Varstvo Pub Date : 2020-06-25 eCollection Date: 2020-09-01 DOI:10.2478/sjph-2020-0015
Ivan Eržen, Tina Kamenšek, Miha Fošnarič, Janez Žibert
{"title":"流行病建模的主要挑战——迄今为止,我们从COVID-19流行病中学到了什么?","authors":"Ivan Eržen,&nbsp;Tina Kamenšek,&nbsp;Miha Fošnarič,&nbsp;Janez Žibert","doi":"10.2478/sjph-2020-0015","DOIUrl":null,"url":null,"abstract":"<p><p>Mathematical modelling can be useful for predicting how infectious diseases progress, enabling us to show the likely outcome of an epidemic and help inform public health interventions. Different modelling techniques have been used to predict and simulate the spread of COVID-19, but they have not always been useful for epidemiologists and decision-makers. To improve the reliability of the modelling results, it is very important to critically evaluate the data used and to check whether or not due regard has been paid to the different ways in which the disease spreads through the population. As building an epidemiological model that is reliable enough and suits the current epidemiological situation within a country or region, certain criteria must be met in the modelling process. It might be necessary to use a combination of two or more different types of models in order to cover all aspects of epidemic modelling. If we want epidemiological models to be a useful tool in combating the epidemic, we need to engage experts from epidemiology, data science and statistics.</p>","PeriodicalId":45127,"journal":{"name":"Zdravstveno Varstvo","volume":"59 3","pages":"117-119"},"PeriodicalIF":1.6000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/46/10/sjph-59-117.PMC7478090.pdf","citationCount":"9","resultStr":"{\"title\":\"Key Challenges in Modelling an Epidemic - What have we Learned from the COVID-19 Epidemic so Far.\",\"authors\":\"Ivan Eržen,&nbsp;Tina Kamenšek,&nbsp;Miha Fošnarič,&nbsp;Janez Žibert\",\"doi\":\"10.2478/sjph-2020-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mathematical modelling can be useful for predicting how infectious diseases progress, enabling us to show the likely outcome of an epidemic and help inform public health interventions. Different modelling techniques have been used to predict and simulate the spread of COVID-19, but they have not always been useful for epidemiologists and decision-makers. To improve the reliability of the modelling results, it is very important to critically evaluate the data used and to check whether or not due regard has been paid to the different ways in which the disease spreads through the population. As building an epidemiological model that is reliable enough and suits the current epidemiological situation within a country or region, certain criteria must be met in the modelling process. It might be necessary to use a combination of two or more different types of models in order to cover all aspects of epidemic modelling. If we want epidemiological models to be a useful tool in combating the epidemic, we need to engage experts from epidemiology, data science and statistics.</p>\",\"PeriodicalId\":45127,\"journal\":{\"name\":\"Zdravstveno Varstvo\",\"volume\":\"59 3\",\"pages\":\"117-119\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/46/10/sjph-59-117.PMC7478090.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zdravstveno Varstvo\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/sjph-2020-0015\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zdravstveno Varstvo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/sjph-2020-0015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 9

摘要

数学建模可用于预测传染病的发展,使我们能够显示流行病的可能结果,并帮助为公共卫生干预提供信息。不同的建模技术被用于预测和模拟COVID-19的传播,但它们对流行病学家和决策者并不总是有用。为了提高建模结果的可靠性,非常重要的是要严格评估所使用的数据,并检查是否适当考虑了疾病在人群中传播的不同方式。要建立一个足够可靠、适合某一国家或地区流行病学现状的流行病学模型,在建模过程中必须满足一定的标准。可能有必要结合使用两种或两种以上不同类型的模型,以便涵盖流行病建模的所有方面。如果我们希望流行病学模型成为抗击这一流行病的有用工具,我们就需要让流行病学、数据科学和统计学方面的专家参与进来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Key Challenges in Modelling an Epidemic - What have we Learned from the COVID-19 Epidemic so Far.

Mathematical modelling can be useful for predicting how infectious diseases progress, enabling us to show the likely outcome of an epidemic and help inform public health interventions. Different modelling techniques have been used to predict and simulate the spread of COVID-19, but they have not always been useful for epidemiologists and decision-makers. To improve the reliability of the modelling results, it is very important to critically evaluate the data used and to check whether or not due regard has been paid to the different ways in which the disease spreads through the population. As building an epidemiological model that is reliable enough and suits the current epidemiological situation within a country or region, certain criteria must be met in the modelling process. It might be necessary to use a combination of two or more different types of models in order to cover all aspects of epidemic modelling. If we want epidemiological models to be a useful tool in combating the epidemic, we need to engage experts from epidemiology, data science and statistics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zdravstveno Varstvo
Zdravstveno Varstvo PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
3.00
自引率
20.00%
发文量
30
审稿时长
23 weeks
期刊最新文献
Cancer Risk Factors Awareness in Slovenian Adolescents. Epidemiology and Risk Factor Analysis of Systemic Allergic Reaction to Bee Venom in the Slovenian Population of Beekeepers. Exploring General Practitioner Work in Upper Austria: A Pilot Retrospective Observational Study Across Thirty Practices. Factors Associated with Low Back Overuse Injuries in Sports Science Students - A Prospective Study. Patients' Experience with Received Healthcare in Internal Medicine and Surgery Wards of Slovenian Hospitals-A Cross-Sectional Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1