脊椎动物的程序化DNA消除。

IF 8.7 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Annual Review of Animal Biosciences Pub Date : 2021-02-16 Epub Date: 2020-09-28 DOI:10.1146/annurev-animal-061220-023220
Jeramiah J Smith, Vladimir A Timoshevskiy, Cody Saraceno
{"title":"脊椎动物的程序化DNA消除。","authors":"Jeramiah J Smith,&nbsp;Vladimir A Timoshevskiy,&nbsp;Cody Saraceno","doi":"10.1146/annurev-animal-061220-023220","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"9 ","pages":"173-201"},"PeriodicalIF":8.7000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-animal-061220-023220","citationCount":"24","resultStr":"{\"title\":\"Programmed DNA Elimination in Vertebrates.\",\"authors\":\"Jeramiah J Smith,&nbsp;Vladimir A Timoshevskiy,&nbsp;Cody Saraceno\",\"doi\":\"10.1146/annurev-animal-061220-023220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA.</p>\",\"PeriodicalId\":48953,\"journal\":{\"name\":\"Annual Review of Animal Biosciences\",\"volume\":\"9 \",\"pages\":\"173-201\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2021-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-animal-061220-023220\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Animal Biosciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-animal-061220-023220\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Animal Biosciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-animal-061220-023220","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 24

摘要

在过去的几十年里,越来越多的脊椎动物类群在发育过程中经历了程序性基因组重排或程序性DNA丢失。在这些生物体中,生殖细胞的基因组在可复制性上往往不同于体内所有其他细胞的基因组。虽然我们显然还没有确定所有经历程序性基因组丢失的脊椎动物分类群,但已知经历基因组丢失的物种列表现在代表了大约10%的脊椎动物物种,包括几个基本分化的谱系。最近的研究揭示了DNA丢失的靶点和机制以及它们与DNA沉默的典型模式的关联。最终,将这些研究扩展到更大的分类群中,将有助于重建脊椎动物谱系中程序性DNA丢失的共享/独立祖先模式,以及更近期的进化事件,这些进化事件塑造了被淘汰DNA的结构和内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Programmed DNA Elimination in Vertebrates.

Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Animal Biosciences
Annual Review of Animal Biosciences BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ZOOLOGY
CiteScore
21.30
自引率
0.80%
发文量
31
期刊介绍: The Annual Review of Animal Biosciences is primarily dedicated to the fields of biotechnology, genetics, genomics, and breeding, with a special focus on veterinary medicine. This includes veterinary pathobiology, infectious diseases and vaccine development, and conservation and zoo biology. The publication aims to address the needs of scientists studying both wild and domesticated animal species, veterinarians, conservation biologists, and geneticists.
期刊最新文献
Comparative Genomics and Epigenomics of Transcriptional Regulation. Lipotoxicity and Oocyte Quality in Mammals: Pathogenesis, Consequences, and Reversibility. The Rhesus Macaque as an Animal Model for Human Nutrition: An Ecological-Evolutionary Perspective. A One Health Approach to Reducing Livestock Disease Prevalence in Developing Countries: Advances, Challenges, and Prospects. A Passion for Small Things and Staying Primed: My Career in Virology and Immunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1