基于经验模式分解和修正样本熵的拉伸反射起始检测。

BMC biomedical engineering Pub Date : 2019-09-26 eCollection Date: 2019-01-01 DOI:10.1186/s42490-019-0023-y
Mingjia Du, Baohua Hu, Feiyun Xiao, Ming Wu, Zongjun Zhu, Yong Wang
{"title":"基于经验模式分解和修正样本熵的拉伸反射起始检测。","authors":"Mingjia Du, Baohua Hu, Feiyun Xiao, Ming Wu, Zongjun Zhu, Yong Wang","doi":"10.1186/s42490-019-0023-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate spasticity assessment provides an objective evaluation index for the rehabilitation treatment of patients with spasticity, and the key is detecting stretch reflex onset. The surface electromyogram of patients with spasticity is prone to false peaks, and its data length is unstable. These conditions decrease signal differences before and after stretch reflex onset. Therefore, a method for detecting stretch reflex onset based on empirical mode decomposition denoising and modified sample entropy recognition is proposed in this study.</p><p><strong>Results: </strong>The empirical mode decomposition algorithm is better than the wavelet threshold algorithm in denoising surface electromyogram signal. Without adding Gaussian white noise to the electromyogram signal, the stretch reflex onset recognition rate of the electromyogram signal before and after empirical mode decomposition denoising was increased by 56%. In particular, the recognition rate of stretch reflex onset under the optimal parameter of the modified sample entropy can reach up to 100% and the average recognition rate is 93%.</p><p><strong>Conclusions: </strong>The empirical mode decomposition algorithm can eliminate the baseline activity of the surface electromyogram signal before stretch reflex onset and effectively remove noise from the signal. The identification of stretch reflex onset using combined empirical mode decomposition and modified sample entropy is better than that via modified sample entropy alone, and stretch reflex onset can be accurately determined.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7421583/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detection of stretch reflex onset based on empirical mode decomposition and modified sample entropy.\",\"authors\":\"Mingjia Du, Baohua Hu, Feiyun Xiao, Ming Wu, Zongjun Zhu, Yong Wang\",\"doi\":\"10.1186/s42490-019-0023-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurate spasticity assessment provides an objective evaluation index for the rehabilitation treatment of patients with spasticity, and the key is detecting stretch reflex onset. The surface electromyogram of patients with spasticity is prone to false peaks, and its data length is unstable. These conditions decrease signal differences before and after stretch reflex onset. Therefore, a method for detecting stretch reflex onset based on empirical mode decomposition denoising and modified sample entropy recognition is proposed in this study.</p><p><strong>Results: </strong>The empirical mode decomposition algorithm is better than the wavelet threshold algorithm in denoising surface electromyogram signal. Without adding Gaussian white noise to the electromyogram signal, the stretch reflex onset recognition rate of the electromyogram signal before and after empirical mode decomposition denoising was increased by 56%. In particular, the recognition rate of stretch reflex onset under the optimal parameter of the modified sample entropy can reach up to 100% and the average recognition rate is 93%.</p><p><strong>Conclusions: </strong>The empirical mode decomposition algorithm can eliminate the baseline activity of the surface electromyogram signal before stretch reflex onset and effectively remove noise from the signal. The identification of stretch reflex onset using combined empirical mode decomposition and modified sample entropy is better than that via modified sample entropy alone, and stretch reflex onset can be accurately determined.</p>\",\"PeriodicalId\":72425,\"journal\":{\"name\":\"BMC biomedical engineering\",\"volume\":\"1 \",\"pages\":\"23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7421583/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42490-019-0023-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-019-0023-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:准确的痉挛评估为痉挛患者的康复治疗提供了客观的评价指标,而关键在于检测伸展反射的发生。痉挛患者的表面肌电图容易出现假峰值,而且数据长度不稳定。这些情况会降低拉伸反射开始前后的信号差异。因此,本研究提出了一种基于经验模式分解去噪和修正样本熵识别的拉伸反射起始检测方法:结果:在表面肌电信号去噪方面,经验模式分解算法优于小波阈值算法。在不添加高斯白噪声的情况下,经验模式分解去噪前后肌电信号的拉伸反射发病识别率提高了 56%。其中,在修正样本熵的最优参数下,拉伸反射起始点的识别率可达 100%,平均识别率为 93%:结论:经验模式分解算法可以消除拉伸反射开始前表面肌电信号的基线活动,有效去除信号中的噪声。结论:经验模式分解算法能消除拉伸反射开始前的表面肌电信号基线活动,有效去除信号中的噪声,使用经验模式分解和修正样本熵相结合的方法识别拉伸反射开始比单独使用修正样本熵的方法识别效果更好,能准确判断拉伸反射开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of stretch reflex onset based on empirical mode decomposition and modified sample entropy.

Background: Accurate spasticity assessment provides an objective evaluation index for the rehabilitation treatment of patients with spasticity, and the key is detecting stretch reflex onset. The surface electromyogram of patients with spasticity is prone to false peaks, and its data length is unstable. These conditions decrease signal differences before and after stretch reflex onset. Therefore, a method for detecting stretch reflex onset based on empirical mode decomposition denoising and modified sample entropy recognition is proposed in this study.

Results: The empirical mode decomposition algorithm is better than the wavelet threshold algorithm in denoising surface electromyogram signal. Without adding Gaussian white noise to the electromyogram signal, the stretch reflex onset recognition rate of the electromyogram signal before and after empirical mode decomposition denoising was increased by 56%. In particular, the recognition rate of stretch reflex onset under the optimal parameter of the modified sample entropy can reach up to 100% and the average recognition rate is 93%.

Conclusions: The empirical mode decomposition algorithm can eliminate the baseline activity of the surface electromyogram signal before stretch reflex onset and effectively remove noise from the signal. The identification of stretch reflex onset using combined empirical mode decomposition and modified sample entropy is better than that via modified sample entropy alone, and stretch reflex onset can be accurately determined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
A performance evaluation of commercially available and 3D-printable prosthetic hands: a comparison using the anthropomorphic hand assessment protocol. Comparing scissors and scalpels to a novel surgical instrument: a biomechanical sectioning study. The neurophysiology of sensorimotor prosthetic control. Multi-parameter viscoelastic material model for denture adhesives based on time-temperature superposition and multiple linear regression analysis. The effect of using the hip exoskeleton assistive (HEXA) robot compared to conventional physiotherapy on clinical functional outcomes in stroke patients with hemiplegia: a pilot randomized controlled trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1