探索杜氏肌萎缩症患者主动躯干支持的生理信号:一个案例研究。

BMC biomedical engineering Pub Date : 2019-12-09 eCollection Date: 2019-01-01 DOI:10.1186/s42490-019-0032-x
Stergios Verros, Laura Peeters, Arjen Bergsma, Edsko E G Hekman, Gijsbertus J Verkerke, Bart F J M Koopman
{"title":"探索杜氏肌萎缩症患者主动躯干支持的生理信号:一个案例研究。","authors":"Stergios Verros,&nbsp;Laura Peeters,&nbsp;Arjen Bergsma,&nbsp;Edsko E G Hekman,&nbsp;Gijsbertus J Verkerke,&nbsp;Bart F J M Koopman","doi":"10.1186/s42490-019-0032-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Arm support devices are available to support people with Duchenne muscular dystrophy (DMD), but active trunk support devices are lacking. An active trunk support device can potentially extend the reach of the arm and stabilize the unstable trunk of people with DMD. In a previous study, we showed that healthy people were able to control an active trunk support using four different control interfaces (based on joystick, force on feet, force on sternum and surface electromyography). All four control interfaces had different advantages and disadvantages. The aim of this study was to explore which of the four inputs is detectably used by people with DMD to control an active trunk support.</p><p><strong>Results: </strong>The results were subject-dependent in both experiments. In the active experiment, the joystick was the most promising control interface. Regarding the static experiment, surface electromyography and force on feet worked for two out of the three subjects.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first time that people with DMD have engaged in a control task using signals other than those related to their arm muscles. According to our findings, the control interfaces have to be customised to every DMD subject.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"31"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0032-x","citationCount":"0","resultStr":"{\"title\":\"Exploring physiological signals on people with Duchenne muscular dystrophy for an active trunk support: a case study.\",\"authors\":\"Stergios Verros,&nbsp;Laura Peeters,&nbsp;Arjen Bergsma,&nbsp;Edsko E G Hekman,&nbsp;Gijsbertus J Verkerke,&nbsp;Bart F J M Koopman\",\"doi\":\"10.1186/s42490-019-0032-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Arm support devices are available to support people with Duchenne muscular dystrophy (DMD), but active trunk support devices are lacking. An active trunk support device can potentially extend the reach of the arm and stabilize the unstable trunk of people with DMD. In a previous study, we showed that healthy people were able to control an active trunk support using four different control interfaces (based on joystick, force on feet, force on sternum and surface electromyography). All four control interfaces had different advantages and disadvantages. The aim of this study was to explore which of the four inputs is detectably used by people with DMD to control an active trunk support.</p><p><strong>Results: </strong>The results were subject-dependent in both experiments. In the active experiment, the joystick was the most promising control interface. Regarding the static experiment, surface electromyography and force on feet worked for two out of the three subjects.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first time that people with DMD have engaged in a control task using signals other than those related to their arm muscles. According to our findings, the control interfaces have to be customised to every DMD subject.</p>\",\"PeriodicalId\":72425,\"journal\":{\"name\":\"BMC biomedical engineering\",\"volume\":\"1 \",\"pages\":\"31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42490-019-0032-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42490-019-0032-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-019-0032-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:手臂支持装置可用于支持杜氏肌营养不良(DMD)患者,但缺乏主动躯干支持装置。主动躯干支撑装置可以潜在地延长手臂的伸展范围,稳定DMD患者不稳定的躯干。在之前的一项研究中,我们发现健康人能够使用四种不同的控制界面(基于操纵杆、脚上的力、胸骨上的力和表面肌电图)来控制主动的躯干支撑。所有四种控制接口都有不同的优缺点。本研究的目的是探索四种输入中的哪一种被DMD患者检测到用于控制活动主干支持。结果:两个实验的结果均与受试者相关。在主动实验中,操纵杆是最有前途的控制界面。在静态实验中,表面肌电图和脚上的力对三名受试者中的两名起作用。结论:据我们所知,这是DMD患者第一次使用与手臂肌肉无关的信号参与控制任务。根据我们的发现,控制界面必须针对每个DMD主题进行定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring physiological signals on people with Duchenne muscular dystrophy for an active trunk support: a case study.

Background: Arm support devices are available to support people with Duchenne muscular dystrophy (DMD), but active trunk support devices are lacking. An active trunk support device can potentially extend the reach of the arm and stabilize the unstable trunk of people with DMD. In a previous study, we showed that healthy people were able to control an active trunk support using four different control interfaces (based on joystick, force on feet, force on sternum and surface electromyography). All four control interfaces had different advantages and disadvantages. The aim of this study was to explore which of the four inputs is detectably used by people with DMD to control an active trunk support.

Results: The results were subject-dependent in both experiments. In the active experiment, the joystick was the most promising control interface. Regarding the static experiment, surface electromyography and force on feet worked for two out of the three subjects.

Conclusions: To our knowledge, this is the first time that people with DMD have engaged in a control task using signals other than those related to their arm muscles. According to our findings, the control interfaces have to be customised to every DMD subject.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
A performance evaluation of commercially available and 3D-printable prosthetic hands: a comparison using the anthropomorphic hand assessment protocol. Comparing scissors and scalpels to a novel surgical instrument: a biomechanical sectioning study. The neurophysiology of sensorimotor prosthetic control. Multi-parameter viscoelastic material model for denture adhesives based on time-temperature superposition and multiple linear regression analysis. The effect of using the hip exoskeleton assistive (HEXA) robot compared to conventional physiotherapy on clinical functional outcomes in stroke patients with hemiplegia: a pilot randomized controlled trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1