预测新型冠状病毒疾病的随机模型分析。

IF 4.1 3区 数学 Q1 Mathematics Advances in Difference Equations Pub Date : 2020-01-01 Epub Date: 2020-10-08 DOI:10.1186/s13662-020-03025-w
Ndolane Sene
{"title":"预测新型冠状病毒疾病的随机模型分析。","authors":"Ndolane Sene","doi":"10.1186/s13662-020-03025-w","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a mathematical model to predict the novel coronavirus. Due to the rapid spread of the novel coronavirus disease in the world, we add to the deterministic model of the coronavirus the terms of the stochastic perturbations. In other words, we consider in this paper a stochastic model to predict the novel coronavirus. The equilibrium points of the deterministic model have been determined, and the reproduction number of our deterministic model has been implemented. The asymptotic behaviors of the solutions of the stochastic model around the equilibrium points have been studied. The numerical investigations and the graphical representations obtained with the novel stochastic model are made using the classical stochastic numerical scheme.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543041/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of the stochastic model for predicting the novel coronavirus disease.\",\"authors\":\"Ndolane Sene\",\"doi\":\"10.1186/s13662-020-03025-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a mathematical model to predict the novel coronavirus. Due to the rapid spread of the novel coronavirus disease in the world, we add to the deterministic model of the coronavirus the terms of the stochastic perturbations. In other words, we consider in this paper a stochastic model to predict the novel coronavirus. The equilibrium points of the deterministic model have been determined, and the reproduction number of our deterministic model has been implemented. The asymptotic behaviors of the solutions of the stochastic model around the equilibrium points have been studied. The numerical investigations and the graphical representations obtained with the novel stochastic model are made using the classical stochastic numerical scheme.</p>\",\"PeriodicalId\":53311,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543041/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-020-03025-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-020-03025-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种预测新型冠状病毒的数学模型。由于新型冠状病毒疾病在全球迅速传播,我们在冠状病毒的确定性模型中加入了随机扰动项。换句话说,我们在本文中考虑用随机模型来预测新型冠状病毒。本文确定了确定性模型的平衡点,并实现了确定性模型的繁殖数。研究了随机模型解在平衡点附近的渐近行为。利用经典的随机数值方案,对新型随机模型进行了数值研究和图形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the stochastic model for predicting the novel coronavirus disease.

In this paper, we propose a mathematical model to predict the novel coronavirus. Due to the rapid spread of the novel coronavirus disease in the world, we add to the deterministic model of the coronavirus the terms of the stochastic perturbations. In other words, we consider in this paper a stochastic model to predict the novel coronavirus. The equilibrium points of the deterministic model have been determined, and the reproduction number of our deterministic model has been implemented. The asymptotic behaviors of the solutions of the stochastic model around the equilibrium points have been studied. The numerical investigations and the graphical representations obtained with the novel stochastic model are made using the classical stochastic numerical scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions. The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between. The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations. Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.
期刊最新文献
On an SE(Is)(Ih)AR epidemic model with combined vaccination and antiviral controls for COVID-19 pandemic. An SIR epidemic model for COVID-19 spread with fuzzy parameter: the case of Indonesia. A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load. A dynamic optimal control model for COVID-19 and cholera co-infection in Yemen. Existence and global asymptotic stability criteria for nonlinear neutral-type neural networks involving multiple time delays using a quadratic-integral Lyapunov functional.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1