在真核机械敏感离子通道MSL1中,带电的孔壁残基是正常通道动力学所必需的。

Angela M Schlegel, Elizabeth S Haswell
{"title":"在真核机械敏感离子通道MSL1中,带电的孔壁残基是正常通道动力学所必需的。","authors":"Angela M Schlegel,&nbsp;Elizabeth S Haswell","doi":"10.1080/19336950.2020.1818509","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanosensitive (MS) ion channels are widespread mechanisms for cellular mechanosensation that can be directly activated by increasing membrane tension. The well-studied MscS family of MS ion channels is found in bacteria, archaea, and plants. MscS-Like (MSL)1 is localized to the inner mitochondrial membrane of <i>Arabidopsis thaliana</i>, where it is required for normal mitochondrial responses to oxidative stress. Like <i>Escherichia coli</i> MscS, MSL1 has a pore-lining helix that is kinked. However, in MSL1 this kink is comprised of two charged pore-lining residues, R326 and D327. Using single-channel patch-clamp electrophysiology in <i>E. coli</i>, we show that altering the size and charge of R326 and D327 leads to dramatic changes in channel kinetics. Modest changes in gating pressure were also observed while no effects on channel rectification or conductance were detected. MSL1 channel variants had differing physiological function in <i>E. coli</i> hypoosmotic shock assays, without clear correlation between function and particular channel characteristics. Taken together, these results demonstrate that altering pore-lining residue charge and size disrupts normal channel state stability and gating transitions, and led us to propose the \"sweet spot\" model. In this model, the transition to the closed state is facilitated by attraction between R326 and D327 and repulsion between R326 residues of neighboring monomers. In the open state, expansion of the channel reduces inter-monomeric repulsion, rendering open state stability influenced mainly by attractive forces. This work provides insight into how unique charge-charge interactions can be combined with an otherwise conserved structural feature to help modulate MS channel function.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336950.2020.1818509","citationCount":"5","resultStr":"{\"title\":\"Charged pore-lining residues are required for normal channel kinetics in the eukaryotic mechanosensitive ion channel MSL1.\",\"authors\":\"Angela M Schlegel,&nbsp;Elizabeth S Haswell\",\"doi\":\"10.1080/19336950.2020.1818509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanosensitive (MS) ion channels are widespread mechanisms for cellular mechanosensation that can be directly activated by increasing membrane tension. The well-studied MscS family of MS ion channels is found in bacteria, archaea, and plants. MscS-Like (MSL)1 is localized to the inner mitochondrial membrane of <i>Arabidopsis thaliana</i>, where it is required for normal mitochondrial responses to oxidative stress. Like <i>Escherichia coli</i> MscS, MSL1 has a pore-lining helix that is kinked. However, in MSL1 this kink is comprised of two charged pore-lining residues, R326 and D327. Using single-channel patch-clamp electrophysiology in <i>E. coli</i>, we show that altering the size and charge of R326 and D327 leads to dramatic changes in channel kinetics. Modest changes in gating pressure were also observed while no effects on channel rectification or conductance were detected. MSL1 channel variants had differing physiological function in <i>E. coli</i> hypoosmotic shock assays, without clear correlation between function and particular channel characteristics. Taken together, these results demonstrate that altering pore-lining residue charge and size disrupts normal channel state stability and gating transitions, and led us to propose the \\\"sweet spot\\\" model. In this model, the transition to the closed state is facilitated by attraction between R326 and D327 and repulsion between R326 residues of neighboring monomers. In the open state, expansion of the channel reduces inter-monomeric repulsion, rendering open state stability influenced mainly by attractive forces. This work provides insight into how unique charge-charge interactions can be combined with an otherwise conserved structural feature to help modulate MS channel function.</p>\",\"PeriodicalId\":72555,\"journal\":{\"name\":\"Channels (Austin, Tex.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336950.2020.1818509\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Channels (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19336950.2020.1818509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19336950.2020.1818509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

机械敏感(MS)离子通道是细胞机械感觉的广泛机制,可以通过增加膜张力直接激活。在细菌、古生菌和植物中发现了被充分研究过的MscS离子通道家族。MscS-Like (MSL)1定位于拟南芥线粒体内膜,在那里它是正常线粒体氧化应激反应所必需的。像大肠杆菌间充质干细胞一样,MSL1有一个缠绕的孔衬螺旋。然而,在MSL1中,这个扭结由两个带电的孔衬残基R326和D327组成。在大肠杆菌中使用单通道膜片钳电生理学,我们发现改变R326和D327的大小和电荷会导致通道动力学的巨大变化。也观察到门控压力的适度变化,而对通道整流或电导没有影响。在大肠杆菌低渗休克试验中,MSL1通道变异具有不同的生理功能,功能与特定通道特征之间没有明确的相关性。综上所述,这些结果表明,改变孔隙衬里残基电荷和大小会破坏正常的通道状态稳定性和门控转变,并使我们提出了“甜点”模型。在这个模型中,R326和D327之间的吸引力和相邻单体R326残基之间的斥力促进了向封闭态的过渡。在开放状态下,通道的扩张减少了单体间的排斥,使得开放状态的稳定性主要受引力的影响。这项工作提供了独特的电荷-电荷相互作用如何与其他保守的结构特征相结合,以帮助调制MS通道功能的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charged pore-lining residues are required for normal channel kinetics in the eukaryotic mechanosensitive ion channel MSL1.

Mechanosensitive (MS) ion channels are widespread mechanisms for cellular mechanosensation that can be directly activated by increasing membrane tension. The well-studied MscS family of MS ion channels is found in bacteria, archaea, and plants. MscS-Like (MSL)1 is localized to the inner mitochondrial membrane of Arabidopsis thaliana, where it is required for normal mitochondrial responses to oxidative stress. Like Escherichia coli MscS, MSL1 has a pore-lining helix that is kinked. However, in MSL1 this kink is comprised of two charged pore-lining residues, R326 and D327. Using single-channel patch-clamp electrophysiology in E. coli, we show that altering the size and charge of R326 and D327 leads to dramatic changes in channel kinetics. Modest changes in gating pressure were also observed while no effects on channel rectification or conductance were detected. MSL1 channel variants had differing physiological function in E. coli hypoosmotic shock assays, without clear correlation between function and particular channel characteristics. Taken together, these results demonstrate that altering pore-lining residue charge and size disrupts normal channel state stability and gating transitions, and led us to propose the "sweet spot" model. In this model, the transition to the closed state is facilitated by attraction between R326 and D327 and repulsion between R326 residues of neighboring monomers. In the open state, expansion of the channel reduces inter-monomeric repulsion, rendering open state stability influenced mainly by attractive forces. This work provides insight into how unique charge-charge interactions can be combined with an otherwise conserved structural feature to help modulate MS channel function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A structural atlas of druggable sites on Nav channels. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology. Reducing agents facilitate membrane patch seal integrity and longevity. A phenylalanine at the extracellular side of Kir1.1 facilitates potassium permeation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1