基于生物砖的体外“快速基因组装”。

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS Synthetic biology (Oxford, England) Pub Date : 2017-06-14 eCollection Date: 2017-01-01 DOI:10.1093/synbio/ysx003
Ken-Ichi Yamazaki, Kim de Mora, Kensuke Saitoh
{"title":"基于生物砖的体外“快速基因组装”。","authors":"Ken-Ichi Yamazaki,&nbsp;Kim de Mora,&nbsp;Kensuke Saitoh","doi":"10.1093/synbio/ysx003","DOIUrl":null,"url":null,"abstract":"<p><p>Because of the technological limitations of <i>de novo</i> DNA synthesis in (i) making constructs containing tandemly repeated DNA sequence units, (ii) making an unbiased DNA library containing DNA fragments with sequence multiplicity in a specific region of target genes, and (iii) replacing DNA fragments, development of efficient and reliable biochemical gene assembly methods is still anticipated. We succeeded in developing a biological standardized genetic parts that are flanked between a common upstream and downstream nucleotide sequences in an appropriate plasmid DNA vector (BioBrick)-based novel assembly method that can be used to assemble genes composed of 25 tandemly repeated BioBricks in the correct format <i>in vitro</i>. We named our new DNA part assembly system: 'Quick Gene Assembly (QGA)'. The time required for finishing a sequential fusion of five BioBricks is less than 24 h. We believe that the QGA method could be one of the best methods for 'gene construction based on engineering principles' at the present time, and is also a method suitable for automation in the near future.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"2 1","pages":"ysx003"},"PeriodicalIF":2.6000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/synbio/ysx003","citationCount":"8","resultStr":"{\"title\":\"BioBrick-based 'Quick Gene Assembly' <i>in vitro</i>.\",\"authors\":\"Ken-Ichi Yamazaki,&nbsp;Kim de Mora,&nbsp;Kensuke Saitoh\",\"doi\":\"10.1093/synbio/ysx003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Because of the technological limitations of <i>de novo</i> DNA synthesis in (i) making constructs containing tandemly repeated DNA sequence units, (ii) making an unbiased DNA library containing DNA fragments with sequence multiplicity in a specific region of target genes, and (iii) replacing DNA fragments, development of efficient and reliable biochemical gene assembly methods is still anticipated. We succeeded in developing a biological standardized genetic parts that are flanked between a common upstream and downstream nucleotide sequences in an appropriate plasmid DNA vector (BioBrick)-based novel assembly method that can be used to assemble genes composed of 25 tandemly repeated BioBricks in the correct format <i>in vitro</i>. We named our new DNA part assembly system: 'Quick Gene Assembly (QGA)'. The time required for finishing a sequential fusion of five BioBricks is less than 24 h. We believe that the QGA method could be one of the best methods for 'gene construction based on engineering principles' at the present time, and is also a method suitable for automation in the near future.</p>\",\"PeriodicalId\":74902,\"journal\":{\"name\":\"Synthetic biology (Oxford, England)\",\"volume\":\"2 1\",\"pages\":\"ysx003\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2017-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/synbio/ysx003\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic biology (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysx003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysx003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 8

摘要

由于新DNA合成的技术限制(i)制造含有串联重复DNA序列单元的构建物,(ii)在目标基因的特定区域制造含有序列多样性的DNA片段的无偏DNA文库,以及(iii)替换DNA片段,仍然期待开发高效可靠的生化基因组装方法。我们成功地开发了一种基于合适质粒DNA载体(BioBrick)的新型组装方法,该方法位于共同的上游和下游核苷酸序列之间,可用于在体外以正确的格式组装由25个串联重复的BioBrick组成的基因。我们将这种新的DNA组装系统命名为“快速基因组装(QGA)”。完成五个BioBricks的连续融合所需的时间少于24小时。我们认为,QGA方法可能是目前“基于工程原理的基因构建”的最佳方法之一,也是一种在不久的将来适合自动化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BioBrick-based 'Quick Gene Assembly' in vitro.

Because of the technological limitations of de novo DNA synthesis in (i) making constructs containing tandemly repeated DNA sequence units, (ii) making an unbiased DNA library containing DNA fragments with sequence multiplicity in a specific region of target genes, and (iii) replacing DNA fragments, development of efficient and reliable biochemical gene assembly methods is still anticipated. We succeeded in developing a biological standardized genetic parts that are flanked between a common upstream and downstream nucleotide sequences in an appropriate plasmid DNA vector (BioBrick)-based novel assembly method that can be used to assemble genes composed of 25 tandemly repeated BioBricks in the correct format in vitro. We named our new DNA part assembly system: 'Quick Gene Assembly (QGA)'. The time required for finishing a sequential fusion of five BioBricks is less than 24 h. We believe that the QGA method could be one of the best methods for 'gene construction based on engineering principles' at the present time, and is also a method suitable for automation in the near future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New gene sensors enable precise cell monitoring and control without altering gene sequence. In vitro transcription-based biosensing of glycolate for prototyping of a complex enzyme cascade. Cell-free synthesis of infective phages from in vitro assembled phage genomes for efficient phage engineering and production of large phage libraries. Data hazards in synthetic biology. Navigating the 'moral hazard' argument in synthetic biology's application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1