小鼠乳腺肿瘤类器官的优化大规模繁殖。

IF 3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Mammary Gland Biology and Neoplasia Pub Date : 2020-12-01 Epub Date: 2020-10-26 DOI:10.1007/s10911-020-09464-1
Emma D Wrenn, Breanna M Moore, Erin Greenwood, Margaux McBirney, Kevin J Cheung
{"title":"小鼠乳腺肿瘤类器官的优化大规模繁殖。","authors":"Emma D Wrenn,&nbsp;Breanna M Moore,&nbsp;Erin Greenwood,&nbsp;Margaux McBirney,&nbsp;Kevin J Cheung","doi":"10.1007/s10911-020-09464-1","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor organoids mimic the architecture and heterogeneity of in vivo tumors and enable studies of collective interactions between tumor cells as well as with their surrounding microenvironment. Although tumor organoids hold significant promise as cancer models, they are also more costly and labor-intensive to cultivate than traditional 2D cell culture. We sought to identify critical factors regulating organoid growth ex vivo, and to use these observations to develop a more efficient organoid expansion method. Using time-lapse imaging of mouse mammary tumor organoids in 3D culture, we observed that outgrowth potential varies non-linearly with initial organoid size. Maximal outgrowth occurred in organoids with a starting size between ~10 to 1000 cells. Based on these observations, we developed a suspension culture method that maintains organoids in the ideal size range, enabling expansion from 1 million to over 100 million cells in less than 2 weeks and less than 3 hours of hands-on time. Our method facilitates the rapid, cost-effective expansion of organoids for CRISPR based studies and other assays requiring a large amount of organoid starting material.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"25 4","pages":"337-350"},"PeriodicalIF":3.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10911-020-09464-1","citationCount":"6","resultStr":"{\"title\":\"Optimal, Large-Scale Propagation of Mouse Mammary Tumor Organoids.\",\"authors\":\"Emma D Wrenn,&nbsp;Breanna M Moore,&nbsp;Erin Greenwood,&nbsp;Margaux McBirney,&nbsp;Kevin J Cheung\",\"doi\":\"10.1007/s10911-020-09464-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor organoids mimic the architecture and heterogeneity of in vivo tumors and enable studies of collective interactions between tumor cells as well as with their surrounding microenvironment. Although tumor organoids hold significant promise as cancer models, they are also more costly and labor-intensive to cultivate than traditional 2D cell culture. We sought to identify critical factors regulating organoid growth ex vivo, and to use these observations to develop a more efficient organoid expansion method. Using time-lapse imaging of mouse mammary tumor organoids in 3D culture, we observed that outgrowth potential varies non-linearly with initial organoid size. Maximal outgrowth occurred in organoids with a starting size between ~10 to 1000 cells. Based on these observations, we developed a suspension culture method that maintains organoids in the ideal size range, enabling expansion from 1 million to over 100 million cells in less than 2 weeks and less than 3 hours of hands-on time. Our method facilitates the rapid, cost-effective expansion of organoids for CRISPR based studies and other assays requiring a large amount of organoid starting material.</p>\",\"PeriodicalId\":16413,\"journal\":{\"name\":\"Journal of Mammary Gland Biology and Neoplasia\",\"volume\":\"25 4\",\"pages\":\"337-350\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10911-020-09464-1\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mammary Gland Biology and Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10911-020-09464-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-020-09464-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 6

摘要

肿瘤类器官模拟体内肿瘤的结构和异质性,使研究肿瘤细胞之间以及与周围微环境的集体相互作用成为可能。尽管肿瘤类器官作为癌症模型具有重要的前景,但与传统的二维细胞培养相比,它们的培养成本更高,劳动强度更大。我们试图确定体外调节类器官生长的关键因素,并利用这些观察结果来开发更有效的类器官扩展方法。利用三维培养小鼠乳腺肿瘤类器官的延时成像,我们观察到生长势随初始类器官大小呈非线性变化。最大的生长发生在大约10到1000个细胞大小的类器官中。基于这些观察结果,我们开发了一种悬浮培养方法,使类器官保持在理想的大小范围内,能够在不到2周和不到3小时的操作时间内从100万个细胞扩增到超过1亿个细胞。我们的方法促进了基于CRISPR的研究和其他需要大量类器官起始材料的分析中快速、经济地扩展类器官。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal, Large-Scale Propagation of Mouse Mammary Tumor Organoids.

Tumor organoids mimic the architecture and heterogeneity of in vivo tumors and enable studies of collective interactions between tumor cells as well as with their surrounding microenvironment. Although tumor organoids hold significant promise as cancer models, they are also more costly and labor-intensive to cultivate than traditional 2D cell culture. We sought to identify critical factors regulating organoid growth ex vivo, and to use these observations to develop a more efficient organoid expansion method. Using time-lapse imaging of mouse mammary tumor organoids in 3D culture, we observed that outgrowth potential varies non-linearly with initial organoid size. Maximal outgrowth occurred in organoids with a starting size between ~10 to 1000 cells. Based on these observations, we developed a suspension culture method that maintains organoids in the ideal size range, enabling expansion from 1 million to over 100 million cells in less than 2 weeks and less than 3 hours of hands-on time. Our method facilitates the rapid, cost-effective expansion of organoids for CRISPR based studies and other assays requiring a large amount of organoid starting material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mammary Gland Biology and Neoplasia
Journal of Mammary Gland Biology and Neoplasia 医学-内分泌学与代谢
CiteScore
5.30
自引率
4.00%
发文量
22
期刊介绍: Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function. Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.
期刊最新文献
Gestational breast cancer: distinctive molecular and clinico-epidemiological features. Intramammary Labeling of Epithelial Cell Division. Immune Cell Contribution to Mammary Gland Development. Perimenopausal and Menopausal Mammary Glands In A 4-Vinylcyclohexene Diepoxide Mouse Model. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1