Marcella Nebbioso, Antonietta Moramarco, Alessandro Lambiase, Sandra Giustini, Marco Marenco, Emanuele Miraglia, Pasquale Fino, Chiara Iacovino, Ludovico Alisi
{"title":"神经纤维瘤病 1 型:眼电生理学和周边异常。","authors":"Marcella Nebbioso, Antonietta Moramarco, Alessandro Lambiase, Sandra Giustini, Marco Marenco, Emanuele Miraglia, Pasquale Fino, Chiara Iacovino, Ludovico Alisi","doi":"10.2147/EB.S255184","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neurofibromatosis type 1 (NF1) is a multisystemic disease caused by the mutation of <i>Nf1</i> gene located on chromosome 17q11.2. The mutation determines the loss of function of the protein neurofibromin with consequent uncontrolled cellular proliferation. Patients are characterized by a wide range of dermatological, neurological, and ophthalmological symptoms.</p><p><strong>Purpose: </strong>The aim of the study was to evaluate, through pattern visual evoked potentials (p-VEPs) and frequency doubling technology (FDT) Matrix perimetry, the objective and psychophysical functionality of the optic pathways in a group of NF1 patient.</p><p><strong>Methods: </strong>The study group consisted of 26 patients affected by NF1 and 17 healthy controls. Each patient underwent a complete ophthalmological examination, p-VEPs with the evaluation of amplitude and latency of the P100 wave, and FDT perimetry, with the evaluation of central sensitivity (CS), mean deviation (MD), pattern standard deviation (PSD) and glaucoma hemifield test (GHT).</p><p><strong>Results: </strong>NF1 patients showed a statistically significant alteration in the transmission of visual impulse. P-VEPs results highlighted a reduced amplitude and an increased latency of the P100 wave, suggesting an involvement of the visual pathway. Visual field analysis showed a significant reduction in all the observed parameters as well (CS, MD, PSD, and GHT).</p><p><strong>Conclusion: </strong>The present study showed, in NF1 patients, a qualitative and quantitative alteration in the conduction of stimuli through the visual pathways. The observed alterations are present, although, only at a subclinical level. None of the patients included in the study showed any manifest visual deficit nor had any concomitant pathology that might have affected the outcome of the study. In conclusion, electrophysiological exams and computer perimetry may take part, alongside a wider array of exams, in the differential diagnosis and later monitoring of NF1.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"12 ","pages":"119-127"},"PeriodicalIF":3.1000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d9/9f/eb-12-119.PMC7585783.pdf","citationCount":"0","resultStr":"{\"title\":\"Neurofibromatosis Type 1: Ocular Electrophysiological and Perimetric Anomalies.\",\"authors\":\"Marcella Nebbioso, Antonietta Moramarco, Alessandro Lambiase, Sandra Giustini, Marco Marenco, Emanuele Miraglia, Pasquale Fino, Chiara Iacovino, Ludovico Alisi\",\"doi\":\"10.2147/EB.S255184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Neurofibromatosis type 1 (NF1) is a multisystemic disease caused by the mutation of <i>Nf1</i> gene located on chromosome 17q11.2. The mutation determines the loss of function of the protein neurofibromin with consequent uncontrolled cellular proliferation. Patients are characterized by a wide range of dermatological, neurological, and ophthalmological symptoms.</p><p><strong>Purpose: </strong>The aim of the study was to evaluate, through pattern visual evoked potentials (p-VEPs) and frequency doubling technology (FDT) Matrix perimetry, the objective and psychophysical functionality of the optic pathways in a group of NF1 patient.</p><p><strong>Methods: </strong>The study group consisted of 26 patients affected by NF1 and 17 healthy controls. Each patient underwent a complete ophthalmological examination, p-VEPs with the evaluation of amplitude and latency of the P100 wave, and FDT perimetry, with the evaluation of central sensitivity (CS), mean deviation (MD), pattern standard deviation (PSD) and glaucoma hemifield test (GHT).</p><p><strong>Results: </strong>NF1 patients showed a statistically significant alteration in the transmission of visual impulse. P-VEPs results highlighted a reduced amplitude and an increased latency of the P100 wave, suggesting an involvement of the visual pathway. Visual field analysis showed a significant reduction in all the observed parameters as well (CS, MD, PSD, and GHT).</p><p><strong>Conclusion: </strong>The present study showed, in NF1 patients, a qualitative and quantitative alteration in the conduction of stimuli through the visual pathways. The observed alterations are present, although, only at a subclinical level. None of the patients included in the study showed any manifest visual deficit nor had any concomitant pathology that might have affected the outcome of the study. In conclusion, electrophysiological exams and computer perimetry may take part, alongside a wider array of exams, in the differential diagnosis and later monitoring of NF1.</p>\",\"PeriodicalId\":51844,\"journal\":{\"name\":\"Eye and Brain\",\"volume\":\"12 \",\"pages\":\"119-127\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d9/9f/eb-12-119.PMC7585783.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eye and Brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/EB.S255184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/EB.S255184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Neurofibromatosis Type 1: Ocular Electrophysiological and Perimetric Anomalies.
Introduction: Neurofibromatosis type 1 (NF1) is a multisystemic disease caused by the mutation of Nf1 gene located on chromosome 17q11.2. The mutation determines the loss of function of the protein neurofibromin with consequent uncontrolled cellular proliferation. Patients are characterized by a wide range of dermatological, neurological, and ophthalmological symptoms.
Purpose: The aim of the study was to evaluate, through pattern visual evoked potentials (p-VEPs) and frequency doubling technology (FDT) Matrix perimetry, the objective and psychophysical functionality of the optic pathways in a group of NF1 patient.
Methods: The study group consisted of 26 patients affected by NF1 and 17 healthy controls. Each patient underwent a complete ophthalmological examination, p-VEPs with the evaluation of amplitude and latency of the P100 wave, and FDT perimetry, with the evaluation of central sensitivity (CS), mean deviation (MD), pattern standard deviation (PSD) and glaucoma hemifield test (GHT).
Results: NF1 patients showed a statistically significant alteration in the transmission of visual impulse. P-VEPs results highlighted a reduced amplitude and an increased latency of the P100 wave, suggesting an involvement of the visual pathway. Visual field analysis showed a significant reduction in all the observed parameters as well (CS, MD, PSD, and GHT).
Conclusion: The present study showed, in NF1 patients, a qualitative and quantitative alteration in the conduction of stimuli through the visual pathways. The observed alterations are present, although, only at a subclinical level. None of the patients included in the study showed any manifest visual deficit nor had any concomitant pathology that might have affected the outcome of the study. In conclusion, electrophysiological exams and computer perimetry may take part, alongside a wider array of exams, in the differential diagnosis and later monitoring of NF1.
期刊介绍:
Eye and Brain is an international, peer-reviewed, open access journal focusing on basic research, clinical findings, and expert reviews in the field of visual science and neuro-ophthalmology. The journal’s unique focus is the link between two well-known visual centres, the eye and the brain, with an emphasis on the importance of such connections. All aspects of clinical and especially basic research on the visual system are addressed within the journal as well as significant future directions in vision research and therapeutic measures. This unique journal focuses on neurological aspects of vision – both physiological and pathological. The scope of the journal spans from the cornea to the associational visual cortex and all the visual centers in between. Topics range from basic biological mechanisms to therapeutic treatment, from simple organisms to humans, and utilizing techniques from molecular biology to behavior. The journal especially welcomes primary research articles or review papers that make the connection between the eye and the brain. Specific areas covered in the journal include: Physiology and pathophysiology of visual centers, Eye movement disorders and strabismus, Cellular, biochemical, and molecular features of the visual system, Structural and functional organization of the eye and of the visual cortex, Metabolic demands of the visual system, Diseases and disorders with neuro-ophthalmic manifestations, Clinical and experimental neuro-ophthalmology and visual system pathologies, Epidemiological studies.