用于生物需氧量快速测量的电流传感生物传感器。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2020-10-26 eCollection Date: 2020-01-01 DOI:10.1155/2020/8894925
Yiman Liu, Jie Li, Nianxin Wan, Tianyu Fu, Lili Wang, Cong Li, Zhonghui Qie, Ao Zhu
{"title":"用于生物需氧量快速测量的电流传感生物传感器。","authors":"Yiman Liu,&nbsp;Jie Li,&nbsp;Nianxin Wan,&nbsp;Tianyu Fu,&nbsp;Lili Wang,&nbsp;Cong Li,&nbsp;Zhonghui Qie,&nbsp;Ao Zhu","doi":"10.1155/2020/8894925","DOIUrl":null,"url":null,"abstract":"<p><p>In order to improve the practicality of the rapid biochemical oxygen demand (BOD) method, a highly sensitive rapid detection method for BOD that is based on establishing the correlation between current and dissolved oxygen (DO) was developed. In this experiment, <i>Bacillus subtilis</i> was used as the test microorganism, and the embedding method was used to achieve quantitative fixation of microorganisms, which could increase the content of microorganisms and prolong the service life of the biological element. The conductivity (COND) probe is used as a sensing element, so that the testing value can be read every second. In the program, the moving average method is used to process the collected data so that the value can be read every minute. National standard samples were detected to test the accuracy and stability of the method. The results showed that relative error and analytical standard deviations were less than 5%. Different polluted water was tested to evaluate its application range. The results showed that relative error was less than 5%. The results of the method are consistent with the results of the wastewater sample obtained by the BOD<sub>5</sub> standard method. The proposed rapid BOD current sensing biosensor method should be promising in practical application of wastewater monitoring.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8894925","citationCount":"5","resultStr":"{\"title\":\"A Current Sensing Biosensor for BOD Rapid Measurement.\",\"authors\":\"Yiman Liu,&nbsp;Jie Li,&nbsp;Nianxin Wan,&nbsp;Tianyu Fu,&nbsp;Lili Wang,&nbsp;Cong Li,&nbsp;Zhonghui Qie,&nbsp;Ao Zhu\",\"doi\":\"10.1155/2020/8894925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to improve the practicality of the rapid biochemical oxygen demand (BOD) method, a highly sensitive rapid detection method for BOD that is based on establishing the correlation between current and dissolved oxygen (DO) was developed. In this experiment, <i>Bacillus subtilis</i> was used as the test microorganism, and the embedding method was used to achieve quantitative fixation of microorganisms, which could increase the content of microorganisms and prolong the service life of the biological element. The conductivity (COND) probe is used as a sensing element, so that the testing value can be read every second. In the program, the moving average method is used to process the collected data so that the value can be read every minute. National standard samples were detected to test the accuracy and stability of the method. The results showed that relative error and analytical standard deviations were less than 5%. Different polluted water was tested to evaluate its application range. The results showed that relative error was less than 5%. The results of the method are consistent with the results of the wastewater sample obtained by the BOD<sub>5</sub> standard method. The proposed rapid BOD current sensing biosensor method should be promising in practical application of wastewater monitoring.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/8894925\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/8894925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2020/8894925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5

摘要

为了提高快速生化需氧量(BOD)方法的实用性,建立了一种基于电流与溶解氧(DO)相关性的高灵敏度生化需氧量(BOD)快速检测方法。本实验以枯草芽孢杆菌为试验微生物,采用包埋法实现微生物的定量固定,可以提高微生物的含量,延长生物元素的使用寿命。电导率(COND)探头用作传感元件,以便每秒读取测试值。在程序中,使用移动平均法处理收集到的数据,以便每分钟读取值。对国家标准样品进行检测,检验方法的准确性和稳定性。结果表明,相对误差和分析标准偏差均小于5%。对不同污染水质进行了测试,以评价其适用范围。结果表明,相对误差小于5%。所得结果与BOD5标准法对废水样品的测定结果一致。提出的快速BOD电流传感生物传感器方法在污水监测中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Current Sensing Biosensor for BOD Rapid Measurement.

In order to improve the practicality of the rapid biochemical oxygen demand (BOD) method, a highly sensitive rapid detection method for BOD that is based on establishing the correlation between current and dissolved oxygen (DO) was developed. In this experiment, Bacillus subtilis was used as the test microorganism, and the embedding method was used to achieve quantitative fixation of microorganisms, which could increase the content of microorganisms and prolong the service life of the biological element. The conductivity (COND) probe is used as a sensing element, so that the testing value can be read every second. In the program, the moving average method is used to process the collected data so that the value can be read every minute. National standard samples were detected to test the accuracy and stability of the method. The results showed that relative error and analytical standard deviations were less than 5%. Different polluted water was tested to evaluate its application range. The results showed that relative error was less than 5%. The results of the method are consistent with the results of the wastewater sample obtained by the BOD5 standard method. The proposed rapid BOD current sensing biosensor method should be promising in practical application of wastewater monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1