Sultan Hussain, Anwar Zeb, Akhter Rasheed, Tareq Saeed
{"title":"冠状病毒传播与控制的随机数学模型。","authors":"Sultan Hussain, Anwar Zeb, Akhter Rasheed, Tareq Saeed","doi":"10.1186/s13662-020-03029-6","DOIUrl":null,"url":null,"abstract":"<p><p>This work is devoted to a stochastic model on the spread and control of corona virus (COVID-19), in which the total population of a corona infected area is divided into susceptible, infected, and recovered classes. In reality, the number of individuals who get disease, the number of deaths due to corona virus, and the number of recovered are stochastic, because nobody can tell the exact value of these numbers in the future. The models containing these terms must be stochastic. Such numbers are estimated and counted by a random process called a Poisson process (or birth process). We construct an SIR-type model in which the above numbers are stochastic and counted by a Poisson process. To understand the spread and control of corona virus in a better way, we first study the stability of the corresponding deterministic model, investigate the unique nonnegative strong solution and an inequality managing of which leads to control of the virus. After this, we pass to the stochastic model and show the existence of a unique strong solution. Next, we use the supermartingale approach to investigate a bound managing of which also leads to decrease of the number of infected individuals. Finally, we use the data of the COVOD-19 in USA to calculate the intensity of Poisson processes and verify our results.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-03029-6","citationCount":"8","resultStr":"{\"title\":\"Stochastic mathematical model for the spread and control of Corona virus.\",\"authors\":\"Sultan Hussain, Anwar Zeb, Akhter Rasheed, Tareq Saeed\",\"doi\":\"10.1186/s13662-020-03029-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work is devoted to a stochastic model on the spread and control of corona virus (COVID-19), in which the total population of a corona infected area is divided into susceptible, infected, and recovered classes. In reality, the number of individuals who get disease, the number of deaths due to corona virus, and the number of recovered are stochastic, because nobody can tell the exact value of these numbers in the future. The models containing these terms must be stochastic. Such numbers are estimated and counted by a random process called a Poisson process (or birth process). We construct an SIR-type model in which the above numbers are stochastic and counted by a Poisson process. To understand the spread and control of corona virus in a better way, we first study the stability of the corresponding deterministic model, investigate the unique nonnegative strong solution and an inequality managing of which leads to control of the virus. After this, we pass to the stochastic model and show the existence of a unique strong solution. Next, we use the supermartingale approach to investigate a bound managing of which also leads to decrease of the number of infected individuals. Finally, we use the data of the COVOD-19 in USA to calculate the intensity of Poisson processes and verify our results.</p>\",\"PeriodicalId\":53311,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13662-020-03029-6\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-020-03029-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-020-03029-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Stochastic mathematical model for the spread and control of Corona virus.
This work is devoted to a stochastic model on the spread and control of corona virus (COVID-19), in which the total population of a corona infected area is divided into susceptible, infected, and recovered classes. In reality, the number of individuals who get disease, the number of deaths due to corona virus, and the number of recovered are stochastic, because nobody can tell the exact value of these numbers in the future. The models containing these terms must be stochastic. Such numbers are estimated and counted by a random process called a Poisson process (or birth process). We construct an SIR-type model in which the above numbers are stochastic and counted by a Poisson process. To understand the spread and control of corona virus in a better way, we first study the stability of the corresponding deterministic model, investigate the unique nonnegative strong solution and an inequality managing of which leads to control of the virus. After this, we pass to the stochastic model and show the existence of a unique strong solution. Next, we use the supermartingale approach to investigate a bound managing of which also leads to decrease of the number of infected individuals. Finally, we use the data of the COVOD-19 in USA to calculate the intensity of Poisson processes and verify our results.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.