肠杆菌中Theta质粒复制的机制及其对宿主的适应意义

Q1 Medicine EcoSal Plus Pub Date : 2020-11-01 DOI:10.1128/ecosalplus.ESP-0026-2019
Jay W Kim, Vega Bugata, Gerardo Cortés-Cortés, Giselle Quevedo-Martínez, Manel Camps
{"title":"肠杆菌中Theta质粒复制的机制及其对宿主的适应意义","authors":"Jay W Kim, Vega Bugata, Gerardo Cortés-Cortés, Giselle Quevedo-Martínez, Manel Camps","doi":"10.1128/ecosalplus.ESP-0026-2019","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at <i>oriC</i>, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (<i>ori</i>). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with <i>ori</i> function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the <i>ori</i> in a large collection of <i>Escherichia coli</i> plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724965/pdf/nihms-1636126.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host.\",\"authors\":\"Jay W Kim, Vega Bugata, Gerardo Cortés-Cortés, Giselle Quevedo-Martínez, Manel Camps\",\"doi\":\"10.1128/ecosalplus.ESP-0026-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at <i>oriC</i>, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (<i>ori</i>). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with <i>ori</i> function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the <i>ori</i> in a large collection of <i>Escherichia coli</i> plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.</p>\",\"PeriodicalId\":11500,\"journal\":{\"name\":\"EcoSal Plus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724965/pdf/nihms-1636126.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoSal Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/ecosalplus.ESP-0026-2019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0026-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

质粒是自主复制序列,帮助细胞适应不同的压力。Theta质粒是肠杆菌中最常见的质粒类别。它们选择了两种宿主复制机制:oriC的复制,这是一种依赖dna的途径,导致复制体组装(theta类a);复制叉重新启动,这是一种依赖pria的途径,通过引物延伸和D环形成导致pria组装(theta类B, C和D)。为了确保不受宿主复制的影响,并促进拷贝数调节,theta质粒在复制的质粒起源处具有独特的复制起始机制(ori)。质粒拷贝数的严格调控是必要的,因为质粒基因剂量对基因表达有重大而直接的影响。质粒复制和分离的时机也是优化质粒基因表达的关键。因此,我们提出质粒复制需要在其生物学背景下理解,其中复杂的复制起源(冗余起源,镶嵌和协整复制子),质粒分离和毒素-抗毒素系统经常存在。在大肠杆菌质粒的大量收集中,我们强调了它们与ori功能的紧密功能整合,表明分区系统和毒素-抗毒素系统倾向于在靠近ori的物理位置进行编码。我们还提出,质粒对宿主的适应优化了它们对宿主适应性的贡献,同时限制了获得广泛的遗传多样性。我们认为,对宿主的适应和获得遗传多样性之间的权衡可能是塑造肠杆菌群体中复制子分布的决定性因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host.

Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at oriC, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (ori). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with ori function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the ori in a large collection of Escherichia coli plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EcoSal Plus
EcoSal Plus Immunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍: EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.
期刊最新文献
Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. Transcription activation in Escherichia coli and Salmonella. Type IV pili of Enterobacteriaceae species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1