B Kaczmarek, O Mazur, O Miłek, M Michalska-Sionkowska, A Das, A Jaiswal, J Vishnu, K Tiwari, A Sionkowska, A M Osyczka, G Manivasagam
{"title":"单宁酸与铁(III)离子络合富膜的设计、表征及体外评价。","authors":"B Kaczmarek, O Mazur, O Miłek, M Michalska-Sionkowska, A Das, A Jaiswal, J Vishnu, K Tiwari, A Sionkowska, A M Osyczka, G Manivasagam","doi":"10.1007/s40204-020-00146-z","DOIUrl":null,"url":null,"abstract":"<p><p>Materials based on carbohydrate polymers may be used for biomedical application. However, materials based on natural polymers have weak physicochemical properties. Thereby, there is a challenge to improve their properties without initiation of toxicity. The alternative method compared to toxic chemical agents' addition is the use of metal complexation method. In this study, chitosan/tannic acid mixtures modified by Fe(III) complexation are proposed and tested for potential applications as wound dressings. Thereby, surface properties, blood compatibility as well as platelet adhesion was tested. In addition, the periodontal ligament stromal cells compatibility studies were carried out. The results showed that the iron(III) addition to chitosan/tannic acid mixture improves properties due to a decrease in the surface free energy and exhibited a reduction in the hemolysis rate (below 5%). Moreover, cells cultured on the surface of films with Fe(III) showed higher metabolic activity. The current findings allow for the medical application of the proposed materials as wound dressings.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00146-z","citationCount":"1","resultStr":"{\"title\":\"Design, characterization and in vitro evaluation of thin films enriched by tannic acid complexed by Fe(III) ions.\",\"authors\":\"B Kaczmarek, O Mazur, O Miłek, M Michalska-Sionkowska, A Das, A Jaiswal, J Vishnu, K Tiwari, A Sionkowska, A M Osyczka, G Manivasagam\",\"doi\":\"10.1007/s40204-020-00146-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Materials based on carbohydrate polymers may be used for biomedical application. However, materials based on natural polymers have weak physicochemical properties. Thereby, there is a challenge to improve their properties without initiation of toxicity. The alternative method compared to toxic chemical agents' addition is the use of metal complexation method. In this study, chitosan/tannic acid mixtures modified by Fe(III) complexation are proposed and tested for potential applications as wound dressings. Thereby, surface properties, blood compatibility as well as platelet adhesion was tested. In addition, the periodontal ligament stromal cells compatibility studies were carried out. The results showed that the iron(III) addition to chitosan/tannic acid mixture improves properties due to a decrease in the surface free energy and exhibited a reduction in the hemolysis rate (below 5%). Moreover, cells cultured on the surface of films with Fe(III) showed higher metabolic activity. The current findings allow for the medical application of the proposed materials as wound dressings.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40204-020-00146-z\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-020-00146-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-020-00146-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Design, characterization and in vitro evaluation of thin films enriched by tannic acid complexed by Fe(III) ions.
Materials based on carbohydrate polymers may be used for biomedical application. However, materials based on natural polymers have weak physicochemical properties. Thereby, there is a challenge to improve their properties without initiation of toxicity. The alternative method compared to toxic chemical agents' addition is the use of metal complexation method. In this study, chitosan/tannic acid mixtures modified by Fe(III) complexation are proposed and tested for potential applications as wound dressings. Thereby, surface properties, blood compatibility as well as platelet adhesion was tested. In addition, the periodontal ligament stromal cells compatibility studies were carried out. The results showed that the iron(III) addition to chitosan/tannic acid mixture improves properties due to a decrease in the surface free energy and exhibited a reduction in the hemolysis rate (below 5%). Moreover, cells cultured on the surface of films with Fe(III) showed higher metabolic activity. The current findings allow for the medical application of the proposed materials as wound dressings.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.