{"title":"使用卷积神经网络识别谷歌地球图像中的植被类型:以日本竹林为例。","authors":"Shuntaro Watanabe, Kazuaki Sumi, Takeshi Ise","doi":"10.1186/s12898-020-00331-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Classifying and mapping vegetation are crucial tasks in environmental science and natural resource management. However, these tasks are difficult because conventional methods such as field surveys are highly labor-intensive. Identification of target objects from visual data using computer techniques is one of the most promising techniques to reduce the costs and labor for vegetation mapping. Although deep learning and convolutional neural networks (CNNs) have become a new solution for image recognition and classification recently, in general, detection of ambiguous objects such as vegetation is still difficult. In this study, we investigated the effectiveness of adopting the chopped picture method, a recently described protocol for CNNs, and evaluated the efficiency of CNN for plant community detection from Google Earth images.</p><p><strong>Results: </strong>We selected bamboo forests as the target and obtained Google Earth images from three regions in Japan. By applying CNN, the best trained model correctly detected over 90% of the targets. Our results showed that the identification accuracy of CNN is higher than that of conventional machine learning methods.</p><p><strong>Conclusions: </strong>Our results demonstrated that CNN and the chopped picture method are potentially powerful tools for high-accuracy automated detection and mapping of vegetation.</p>","PeriodicalId":9232,"journal":{"name":"BMC Ecology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12898-020-00331-5","citationCount":"21","resultStr":"{\"title\":\"Identifying the vegetation type in Google Earth images using a convolutional neural network: a case study for Japanese bamboo forests.\",\"authors\":\"Shuntaro Watanabe, Kazuaki Sumi, Takeshi Ise\",\"doi\":\"10.1186/s12898-020-00331-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Classifying and mapping vegetation are crucial tasks in environmental science and natural resource management. However, these tasks are difficult because conventional methods such as field surveys are highly labor-intensive. Identification of target objects from visual data using computer techniques is one of the most promising techniques to reduce the costs and labor for vegetation mapping. Although deep learning and convolutional neural networks (CNNs) have become a new solution for image recognition and classification recently, in general, detection of ambiguous objects such as vegetation is still difficult. In this study, we investigated the effectiveness of adopting the chopped picture method, a recently described protocol for CNNs, and evaluated the efficiency of CNN for plant community detection from Google Earth images.</p><p><strong>Results: </strong>We selected bamboo forests as the target and obtained Google Earth images from three regions in Japan. By applying CNN, the best trained model correctly detected over 90% of the targets. Our results showed that the identification accuracy of CNN is higher than that of conventional machine learning methods.</p><p><strong>Conclusions: </strong>Our results demonstrated that CNN and the chopped picture method are potentially powerful tools for high-accuracy automated detection and mapping of vegetation.</p>\",\"PeriodicalId\":9232,\"journal\":{\"name\":\"BMC Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12898-020-00331-5\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12898-020-00331-5\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12898-020-00331-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Identifying the vegetation type in Google Earth images using a convolutional neural network: a case study for Japanese bamboo forests.
Background: Classifying and mapping vegetation are crucial tasks in environmental science and natural resource management. However, these tasks are difficult because conventional methods such as field surveys are highly labor-intensive. Identification of target objects from visual data using computer techniques is one of the most promising techniques to reduce the costs and labor for vegetation mapping. Although deep learning and convolutional neural networks (CNNs) have become a new solution for image recognition and classification recently, in general, detection of ambiguous objects such as vegetation is still difficult. In this study, we investigated the effectiveness of adopting the chopped picture method, a recently described protocol for CNNs, and evaluated the efficiency of CNN for plant community detection from Google Earth images.
Results: We selected bamboo forests as the target and obtained Google Earth images from three regions in Japan. By applying CNN, the best trained model correctly detected over 90% of the targets. Our results showed that the identification accuracy of CNN is higher than that of conventional machine learning methods.
Conclusions: Our results demonstrated that CNN and the chopped picture method are potentially powerful tools for high-accuracy automated detection and mapping of vegetation.
期刊介绍:
BMC Ecology is an open access, peer-reviewed journal that considers articles on environmental, behavioral and population ecology as well as biodiversity of plants, animals and microbes.