光合作用真核生物的进化当前的观点,困惑和一个新的视角。

Q4 Biochemistry, Genetics and Molecular Biology Results and Problems in Cell Differentiation Pub Date : 2020-01-01 DOI:10.1007/978-3-030-51849-3_12
Shinichiro Maruyama, Eunsoo Kim
{"title":"光合作用真核生物的进化当前的观点,困惑和一个新的视角。","authors":"Shinichiro Maruyama,&nbsp;Eunsoo Kim","doi":"10.1007/978-3-030-51849-3_12","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of eukaryotic photosynthesis marked a major transition for life on Earth, profoundly impacting the atmosphere of the Earth and evolutionary trajectory of an array of life forms. There are about ten lineages of photosynthetic eukaryotes, including Chloroplastida, Rhodophyta, and Cryptophyta. Mechanistically, eukaryotic photosynthesis arose via a symbiotic merger between a host eukaryote and either a cyanobacterial or eukaryotic photosymbiont. There are, however, many aspects of this major evolutionary transition that remain unsettled. The field, so far, has been dominated by proposals formulated following the principle of parsimony, such as the Archaeplastida hypothesis, in which a taxonomic lineage is often conceptually recognized as an individual cell (or a distinct entity). Such an assumption could lead to confusion or unrealistic interpretation of discordant genomic and phenotypic data. Here, we propose that the free-living ancestors to the plastids may have originated from a diversified lineage of cyanobacteria that were prone to symbioses, akin to some modern-day algae such as the Symbiodiniaceae dinoflagellates and Chlorella-related algae that associate with a number of unrelated host eukaryotes. This scenario, which assumes the plurality of ancestral form, better explains relatively minor but important differences that are observed in the genomes of modern-day eukaryotic algal species. Such a non-typological (or population-aware) way of thinking seems to better-model empirical data, such as discordant phylogenies between plastid and host eukaryote genes.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-51849-3_12","citationCount":"4","resultStr":"{\"title\":\"Evolution of Photosynthetic Eukaryotes; Current Opinion, Perplexity, and a New Perspective.\",\"authors\":\"Shinichiro Maruyama,&nbsp;Eunsoo Kim\",\"doi\":\"10.1007/978-3-030-51849-3_12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolution of eukaryotic photosynthesis marked a major transition for life on Earth, profoundly impacting the atmosphere of the Earth and evolutionary trajectory of an array of life forms. There are about ten lineages of photosynthetic eukaryotes, including Chloroplastida, Rhodophyta, and Cryptophyta. Mechanistically, eukaryotic photosynthesis arose via a symbiotic merger between a host eukaryote and either a cyanobacterial or eukaryotic photosymbiont. There are, however, many aspects of this major evolutionary transition that remain unsettled. The field, so far, has been dominated by proposals formulated following the principle of parsimony, such as the Archaeplastida hypothesis, in which a taxonomic lineage is often conceptually recognized as an individual cell (or a distinct entity). Such an assumption could lead to confusion or unrealistic interpretation of discordant genomic and phenotypic data. Here, we propose that the free-living ancestors to the plastids may have originated from a diversified lineage of cyanobacteria that were prone to symbioses, akin to some modern-day algae such as the Symbiodiniaceae dinoflagellates and Chlorella-related algae that associate with a number of unrelated host eukaryotes. This scenario, which assumes the plurality of ancestral form, better explains relatively minor but important differences that are observed in the genomes of modern-day eukaryotic algal species. Such a non-typological (or population-aware) way of thinking seems to better-model empirical data, such as discordant phylogenies between plastid and host eukaryote genes.</p>\",\"PeriodicalId\":39320,\"journal\":{\"name\":\"Results and Problems in Cell Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-030-51849-3_12\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results and Problems in Cell Differentiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-51849-3_12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-51849-3_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

摘要

真核生物光合作用的进化标志着地球上生命的重大转变,深刻地影响了地球的大气和一系列生命形式的进化轨迹。光合真核生物大约有十个谱系,包括叶绿体、红藻和隐藻。从机制上讲,真核生物光合作用是通过宿主真核生物与蓝藻或真核光共生体之间的共生合并而产生的。然而,这一重大进化转变的许多方面仍未得到解决。到目前为止,该领域一直被遵循简约原则提出的建议所主导,例如古质体假说,在该假说中,分类谱系通常在概念上被认为是单个细胞(或不同的实体)。这样的假设可能导致对不一致的基因组和表型数据的混淆或不切实际的解释。在这里,我们提出,自由生活的质体祖先可能起源于一个多样化的蓝藻谱系,这些蓝藻谱系倾向于共生,类似于一些现代藻类,如共生藻科鞭毛藻和小球藻相关的藻类,它们与许多不相关的真核生物宿主相关联。这种假设多种祖先形式的情景,更好地解释了在现代真核藻类物种基因组中观察到的相对较小但重要的差异。这种非类型学(或种群意识)的思维方式似乎可以更好地模拟经验数据,例如质体和宿主真核生物基因之间不一致的系统发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of Photosynthetic Eukaryotes; Current Opinion, Perplexity, and a New Perspective.

The evolution of eukaryotic photosynthesis marked a major transition for life on Earth, profoundly impacting the atmosphere of the Earth and evolutionary trajectory of an array of life forms. There are about ten lineages of photosynthetic eukaryotes, including Chloroplastida, Rhodophyta, and Cryptophyta. Mechanistically, eukaryotic photosynthesis arose via a symbiotic merger between a host eukaryote and either a cyanobacterial or eukaryotic photosymbiont. There are, however, many aspects of this major evolutionary transition that remain unsettled. The field, so far, has been dominated by proposals formulated following the principle of parsimony, such as the Archaeplastida hypothesis, in which a taxonomic lineage is often conceptually recognized as an individual cell (or a distinct entity). Such an assumption could lead to confusion or unrealistic interpretation of discordant genomic and phenotypic data. Here, we propose that the free-living ancestors to the plastids may have originated from a diversified lineage of cyanobacteria that were prone to symbioses, akin to some modern-day algae such as the Symbiodiniaceae dinoflagellates and Chlorella-related algae that associate with a number of unrelated host eukaryotes. This scenario, which assumes the plurality of ancestral form, better explains relatively minor but important differences that are observed in the genomes of modern-day eukaryotic algal species. Such a non-typological (or population-aware) way of thinking seems to better-model empirical data, such as discordant phylogenies between plastid and host eukaryote genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
期刊最新文献
Early Syncytialization of the Ovine Placenta Revisited. HIV-1 Induced Cell-to-Cell Fusion or Syncytium Formation. Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle. Osteoclasts at Bone Remodeling: Order from Order.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1